Apache ShenYu WASM 插件开发与使用指南
2024-08-07 12:23:14作者:咎岭娴Homer
1. 项目介绍
Apache ShenYu WASM 是一个基于 Java 的 WebAssembly (WASM) 运行时 SDK,允许开发者在 ShenYu 网关中集成和执行 WASM 模块,从而扩展网关的功能或实现特定的业务逻辑。该项目旨在提供一个高性能且轻量级的方式来增强 API 网关的能力。
2. 项目快速启动
步骤1:添加依赖
在你的 Maven 或 Gradle 项目中添加 shenyu-wasm-runtime
的依赖:
Maven
<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-wasm-runtime</artifactId>
<version>[$x.y.z]</version>
</dependency>
Gradle
compile "org.apache.shenyu:shenyu-wasm-runtime:[$x.y.z]"
步骤2:编写 WASM 代码
下面是一个 Rust 编写的简单示例(任何可编译到 WASM 的语言都可使用):
#[no_mangle]
pub extern fn sum(x: i32, y: i32) -> i32 {
x + y
}
步骤3:编译成 WASM 文件
将 Rust 代码编译为 .wasm
文件。
步骤4:在 Java 中运行 WASM
在 Java 类中加载并执行 WASM:
import org.apache.shenyu.wasm.api.WASMEngine;
import org.apache.shenyu.wasm.api.WASMModule;
public class Example {
public static void main(String[] args) throws Exception {
// 加载 WASM 文件
byte[] wasmBytes = Files.readAllBytes(Path.of("tests/resources/simple.wasm"));
// 创建 WASM 引擎实例
WASMEngine engine = new WASMEngine();
// 加载 WASM 模块
WASMModule module = engine.instantiate(wasmBytes);
// 调用 WASM 函数
int result = module.callExport("sum", 10, 20).getI32Value();
System.out.println("Sum: " + result); // 输出: Sum: 30
}
}
3. 应用案例和最佳实践
- 安全过滤:使用 WASM 实现自定义的安全策略,如 IP 黑名单检查。
- 性能监控:在网关层面,通过 WASM 监控请求响应时间,统计接口调用频率。
- 数据转换:动态修改请求或响应的数据结构,以满足不同的服务间交互需求。
- 日志记录:创建 WASM 模块来收集和发送详细的请求日志信息。
最佳实践:
- 尽可能使 WASM 模块保持小型和专注,便于管理和更新。
- 使用测试确保 WASM 代码的正确性和性能。
- 注意内存管理,避免在 WASM 中产生内存泄露。
4. 典型生态项目
ShenYu-WASM 可以与其他开源项目结合使用,如:
- Docker: 配合 Docker 容器化部署,方便 WASM 模块的打包和版本控制。
- Kubernetes: 利用 Kubernetes 的服务网格能力,集成 WASM 网关进行流量管理。
- Prometheus: 结合 Prometheus 监控 WASM 执行时的性能指标。
- Zipkin 或 Jaeger: 集成跟踪系统,通过 WASM 模块增强链路追踪。
了解更多详细信息,参考 Apache ShenYu 官方文档和源码仓库。祝你在使用 Apache ShenYu WASM 的过程中一切顺利!
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
226
2.28 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.43 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
214
288