Apache ShenYu WASM 插件开发与使用指南
2024-08-07 12:23:14作者:咎岭娴Homer
1. 项目介绍
Apache ShenYu WASM 是一个基于 Java 的 WebAssembly (WASM) 运行时 SDK,允许开发者在 ShenYu 网关中集成和执行 WASM 模块,从而扩展网关的功能或实现特定的业务逻辑。该项目旨在提供一个高性能且轻量级的方式来增强 API 网关的能力。
2. 项目快速启动
步骤1:添加依赖
在你的 Maven 或 Gradle 项目中添加 shenyu-wasm-runtime 的依赖:
Maven
<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-wasm-runtime</artifactId>
<version>[$x.y.z]</version>
</dependency>
Gradle
compile "org.apache.shenyu:shenyu-wasm-runtime:[$x.y.z]"
步骤2:编写 WASM 代码
下面是一个 Rust 编写的简单示例(任何可编译到 WASM 的语言都可使用):
#[no_mangle]
pub extern fn sum(x: i32, y: i32) -> i32 {
x + y
}
步骤3:编译成 WASM 文件
将 Rust 代码编译为 .wasm 文件。
步骤4:在 Java 中运行 WASM
在 Java 类中加载并执行 WASM:
import org.apache.shenyu.wasm.api.WASMEngine;
import org.apache.shenyu.wasm.api.WASMModule;
public class Example {
public static void main(String[] args) throws Exception {
// 加载 WASM 文件
byte[] wasmBytes = Files.readAllBytes(Path.of("tests/resources/simple.wasm"));
// 创建 WASM 引擎实例
WASMEngine engine = new WASMEngine();
// 加载 WASM 模块
WASMModule module = engine.instantiate(wasmBytes);
// 调用 WASM 函数
int result = module.callExport("sum", 10, 20).getI32Value();
System.out.println("Sum: " + result); // 输出: Sum: 30
}
}
3. 应用案例和最佳实践
- 安全过滤:使用 WASM 实现自定义的安全策略,如 IP 黑名单检查。
- 性能监控:在网关层面,通过 WASM 监控请求响应时间,统计接口调用频率。
- 数据转换:动态修改请求或响应的数据结构,以满足不同的服务间交互需求。
- 日志记录:创建 WASM 模块来收集和发送详细的请求日志信息。
最佳实践:
- 尽可能使 WASM 模块保持小型和专注,便于管理和更新。
- 使用测试确保 WASM 代码的正确性和性能。
- 注意内存管理,避免在 WASM 中产生内存泄露。
4. 典型生态项目
ShenYu-WASM 可以与其他开源项目结合使用,如:
- Docker: 配合 Docker 容器化部署,方便 WASM 模块的打包和版本控制。
- Kubernetes: 利用 Kubernetes 的服务网格能力,集成 WASM 网关进行流量管理。
- Prometheus: 结合 Prometheus 监控 WASM 执行时的性能指标。
- Zipkin 或 Jaeger: 集成跟踪系统,通过 WASM 模块增强链路追踪。
了解更多详细信息,参考 Apache ShenYu 官方文档和源码仓库。祝你在使用 Apache ShenYu WASM 的过程中一切顺利!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
501
3.66 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
暂无简介
Dart
749
180
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
490
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
318
134
仓颉编译器源码及 cjdb 调试工具。
C++
150
882
React Native鸿蒙化仓库
JavaScript
298
347