MMDeploy部署RTMPose模型时输出维度不匹配问题的分析与解决
2025-06-27 09:28:28作者:史锋燃Gardner
在使用MMDeploy工具部署RTMPose姿态估计模型到NCNN后端时,开发者可能会遇到一个典型的错误:"not enough values to unpack (expected 2, got 1)"。这个错误表明模型输出与预期格式不匹配,本文将深入分析问题原因并提供解决方案。
问题现象
当尝试使用MMDeploy将RTMPose模型转换为NCNN格式时,转换过程会在可视化验证阶段失败。错误日志显示模型预期输出是两个张量(分别对应SIMCC的x和y坐标预测),但实际只获得了一个输出张量。
根本原因
这个问题源于配置选择不当。RTMPose模型支持多种不同的姿态表示方法,包括:
- 基于热图的表示方法
- 基于SIMCC(Simultaneous Classification and Coordinate Regression)的表示方法
不同的表示方法对应着不同的输出结构:
- 热图方法通常输出单个热图张量
- SIMCC方法需要同时输出x坐标和y坐标两个预测张量
当选择了不匹配的部署配置文件时,就会出现输出维度不匹配的问题。
解决方案
正确的解决方法是选择与模型训练配置相匹配的部署配置文件。对于使用SIMCC表示方法的RTMPose模型,应该使用专门的SIMCC配置文件:
configs/mmpose/pose-detection_simcc_ncnn-fp16_static-256x192.py
这个配置文件明确指定了:
- 模型使用SIMCC表示方法
- 预期两个输出(x坐标和y坐标)
- 适用于NCNN后端
- 支持FP16精度
- 输入尺寸为256x192
验证方法
部署完成后,可以通过以下方式验证输出是否正确:
- 检查输出张量数量是否为2
- 确认两个输出张量的形状是否符合预期
- 可视化验证预测结果是否合理
最佳实践建议
- 配置匹配:确保部署配置文件与训练配置文件中的姿态表示方法一致
- 版本兼容:检查MMPose和MMDeploy的版本兼容性
- 逐步验证:先转换为ONNX格式并验证,再转换到目标后端
- 日志分析:仔细阅读转换过程中的警告信息,它们往往能提示潜在问题
- 环境隔离:使用conda或venv创建独立的环境,避免依赖冲突
总结
模型部署过程中的输出维度不匹配问题通常源于配置选择不当。通过理解不同姿态表示方法的特点,并选择对应的部署配置,可以有效地解决这类问题。MMDeploy提供了丰富的预置配置,开发者应根据模型特性选择正确的配置文件,确保顺利部署。
对于姿态估计模型的部署,特别需要注意输出结构的定义,这是保证模型转换成功的关键因素之一。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146