《深入浅出pu-learning:从安装到实战》
2025-01-15 14:55:10作者:董灵辛Dennis
在当今数据科学领域,处理带有标签的数据集是常见的任务。然而,在某些场景下,我们只能获取到部分正样本数据和大量未标记的数据。针对这种情况,开源项目pu-learning提供了一套机器学习工具和算法,帮助我们更好地从正样本和未标记数据中学习。本文将详细介绍如何安装和使用pu-learning,让您轻松上手这一强大工具。
安装前准备
在安装pu-learning之前,您需要确保您的系统满足以下要求:
系统和硬件要求
- 操作系统:支持主流操作系统,如Windows、Linux和macOS。
- 硬件:至少4GB内存,推荐使用更高配置的硬件以获得更好的性能。
必备软件和依赖项
- Python:建议使用Python 3.6及以上版本。
- scikit-learn:一个强大的Python机器学习库,用于提供简单和有效的数据挖掘和数据分析工具。
安装步骤
下载开源项目资源
首先,您需要从以下地址克隆pu-learning项目:
https://github.com/aldro61/pu-learning.git
安装过程详解
-
克隆项目到本地后,进入项目目录。
-
使用pip安装项目依赖:
pip install -r requirements.txt -
安装完成后,您可以通过运行以下命令来测试安装是否成功:
python -c "import pu_learning; pu_learning.test()"
常见问题及解决
- 如果在安装过程中遇到任何问题,请首先检查Python和scikit-learn版本是否正确。
- 如果出现依赖项安装失败的情况,可以尝试手动安装缺失的依赖。
基本使用方法
加载开源项目
安装成功后,您可以在Python代码中导入pu-learning模块:
import pu_learning
简单示例演示
下面是一个使用pu-learning的简单示例:
from pu_learning import PUAdapter
from sklearn.datasets import make_classification
from sklearn.linear_model import LogisticRegression
# 生成模拟数据
X, y = make_classification(n_samples=1000, n_features=20, n_informative=2, n_redundant=10, n_classes=2, random_state=42)
# 初始化PUAdapter
pu = PUAdapter(estimator=LogisticRegression())
# 训练模型
pu.fit(X, y)
# 预测未标记数据
unlabeled_data = X[y == -1]
predicted probabilities = pu.predict_proba(unlabeled_data)
# 根据概率阈值确定未标记数据的类别
threshold = 0.5
predicted_labels = (predicted probabilities.max(axis=1) >= threshold).astype(int)
参数设置说明
在PUAdapter中,您可以调整一些参数来优化模型性能,例如:
estimator:用于指定基础模型,可以是任何能够输出概率预测的scikit-learn分类器。threshold:用于确定未标记数据类别的概率阈值。
结论
通过本文,您已经学习了如何安装和使用pu-learning来处理正样本和未标记数据。接下来,您可以尝试在自己的数据集上应用这些方法,并根据需要调整模型参数。更多关于pu-learning的信息和示例,您可以参考项目文档。祝您学习愉快!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249