GraphWaveMachine 项目教程
2024-09-24 04:06:59作者:裘旻烁
1. 项目的目录结构及介绍
GraphWaveMachine/
├── data/
│ └── food_edges.csv
├── output/
├── src/
│ ├── __init__.py
│ ├── graphwave.py
│ └── main.py
├── LICENSE
├── README.md
└── graphwave.png
- data/: 存放输入数据文件的目录,默认包含一个示例数据文件
food_edges.csv。 - output/: 存放输出结果的目录。
- src/: 项目的主要代码目录,包含以下文件:
__init__.py: 初始化文件。graphwave.py: 实现 GraphWave 算法的核心代码。main.py: 项目的启动文件,负责处理命令行参数并调用 GraphWave 算法。
- LICENSE: 项目的许可证文件,采用 GPL-3.0 许可证。
- README.md: 项目的说明文档。
- graphwave.png: 项目相关的图片文件。
2. 项目的启动文件介绍
src/main.py
main.py 是项目的启动文件,负责处理命令行参数并调用 GraphWave 算法。以下是该文件的主要功能:
- 命令行参数解析: 通过
argparse模块解析用户输入的命令行参数,包括输入数据文件路径、输出文件路径、算法参数等。 - 数据加载: 从指定的输入文件中加载图数据。
- GraphWave 算法调用: 调用
graphwave.py中的GraphWave类,执行节点嵌入计算。 - 结果保存: 将计算得到的节点嵌入结果保存到指定的输出文件中。
使用示例
$ python src/main.py --input data/food_edges.csv --output output/embedding.csv
该命令将使用默认参数对 data/food_edges.csv 中的图数据进行节点嵌入计算,并将结果保存到 output/embedding.csv 文件中。
3. 项目的配置文件介绍
GraphWaveMachine 项目没有传统的配置文件(如 .ini 或 .yaml 文件),而是通过命令行参数来配置算法的运行参数。以下是主要的命令行参数及其默认值:
--input STR: 输入数据文件路径,默认值为data/food_edges.csv。--output STR: 输出结果文件路径,默认值为output/embedding.csv。--mechanism STR: 波形生成方法,默认值为exact。--heat-coefficient FLOAT: 热核系数,默认值为1000.0。--sample-number INT: 特征函数采样数量,默认值为50。--approximation INT: Chebyshev 多项式的阶数,默认值为100。--step-size INT: 采样步长,默认值为20。--switch INT: 当图的大小超过此值时,算法切换到近似模式,默认值为100。
配置示例
$ python src/main.py --input data/company_edges.csv --output output/company_embedding.csv --sample-number 128
该命令将使用 data/company_edges.csv 作为输入数据,计算 128 维的节点嵌入,并将结果保存到 output/company_embedding.csv 文件中。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
417
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
614
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758