GraphWaveMachine 项目教程
2024-09-24 04:06:59作者:裘旻烁
1. 项目的目录结构及介绍
GraphWaveMachine/
├── data/
│ └── food_edges.csv
├── output/
├── src/
│ ├── __init__.py
│ ├── graphwave.py
│ └── main.py
├── LICENSE
├── README.md
└── graphwave.png
- data/: 存放输入数据文件的目录,默认包含一个示例数据文件
food_edges.csv。 - output/: 存放输出结果的目录。
- src/: 项目的主要代码目录,包含以下文件:
__init__.py: 初始化文件。graphwave.py: 实现 GraphWave 算法的核心代码。main.py: 项目的启动文件,负责处理命令行参数并调用 GraphWave 算法。
- LICENSE: 项目的许可证文件,采用 GPL-3.0 许可证。
- README.md: 项目的说明文档。
- graphwave.png: 项目相关的图片文件。
2. 项目的启动文件介绍
src/main.py
main.py 是项目的启动文件,负责处理命令行参数并调用 GraphWave 算法。以下是该文件的主要功能:
- 命令行参数解析: 通过
argparse模块解析用户输入的命令行参数,包括输入数据文件路径、输出文件路径、算法参数等。 - 数据加载: 从指定的输入文件中加载图数据。
- GraphWave 算法调用: 调用
graphwave.py中的GraphWave类,执行节点嵌入计算。 - 结果保存: 将计算得到的节点嵌入结果保存到指定的输出文件中。
使用示例
$ python src/main.py --input data/food_edges.csv --output output/embedding.csv
该命令将使用默认参数对 data/food_edges.csv 中的图数据进行节点嵌入计算,并将结果保存到 output/embedding.csv 文件中。
3. 项目的配置文件介绍
GraphWaveMachine 项目没有传统的配置文件(如 .ini 或 .yaml 文件),而是通过命令行参数来配置算法的运行参数。以下是主要的命令行参数及其默认值:
--input STR: 输入数据文件路径,默认值为data/food_edges.csv。--output STR: 输出结果文件路径,默认值为output/embedding.csv。--mechanism STR: 波形生成方法,默认值为exact。--heat-coefficient FLOAT: 热核系数,默认值为1000.0。--sample-number INT: 特征函数采样数量,默认值为50。--approximation INT: Chebyshev 多项式的阶数,默认值为100。--step-size INT: 采样步长,默认值为20。--switch INT: 当图的大小超过此值时,算法切换到近似模式,默认值为100。
配置示例
$ python src/main.py --input data/company_edges.csv --output output/company_embedding.csv --sample-number 128
该命令将使用 data/company_edges.csv 作为输入数据,计算 128 维的节点嵌入,并将结果保存到 output/company_embedding.csv 文件中。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
410
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
251