ONNX2Keras 项目教程
1. 项目介绍
ONNX2Keras 是一个用于将 ONNX 模型转换为 Keras 模型的开源工具。ONNX(Open Neural Network Exchange)是一种开放的深度学习模型格式,而 Keras 是 TensorFlow 的高级 API,广泛用于构建和训练深度学习模型。ONNX2Keras 的主要目的是简化从 ONNX 模型到 Keras 模型的转换过程,使得开发者可以更方便地在 Keras 环境中使用预训练的 ONNX 模型。
主要功能
- 模型转换:将 ONNX 模型转换为 Keras 模型。
- 输入形状覆盖:支持覆盖输入形状,方便适应不同的输入数据。
- 名称策略:支持不同的层命名策略,如短名称、重新编号等。
- 详细输出:提供详细的转换过程输出,便于调试和优化。
2. 项目快速启动
安装
首先,确保你已经安装了 TensorFlow 和 ONNX。然后,通过 pip 安装 ONNX2Keras:
pip install onnx2keras
使用示例
以下是一个简单的示例,展示如何将一个 ONNX 模型转换为 Keras 模型:
import onnx
from onnx2keras import onnx_to_keras
# 加载 ONNX 模型
onnx_model = onnx.load('resnet18.onnx')
# 转换为 Keras 模型
k_model = onnx_to_keras(onnx_model, ['input'])
# 保存 Keras 模型
k_model.save('resnet18.h5')
参数说明
onnx_model:要转换的 ONNX 模型。input_names:模型输入层的名称列表。input_shapes:可选参数,覆盖输入形状。name_policy:可选参数,层命名策略,如'short'、'renumerate'等。verbose:是否输出详细信息,默认为True。change_ordering:是否改变数据排序,默认为False。
3. 应用案例和最佳实践
案例1:图像分类模型的转换
假设你有一个预训练的图像分类模型,存储为 ONNX 格式。你可以使用 ONNX2Keras 将其转换为 Keras 模型,并在 Keras 环境中进行进一步的微调或推理。
import numpy as np
import onnx
from onnx2keras import onnx_to_keras
from tensorflow.keras.preprocessing import image
# 加载 ONNX 模型
onnx_model = onnx.load('image_classifier.onnx')
# 转换为 Keras 模型
k_model = onnx_to_keras(onnx_model, ['input'])
# 加载图像并进行预处理
img = image.load_img('test_image.jpg', target_size=(224, 224))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array /= 255.0
# 进行推理
predictions = k_model.predict(img_array)
print(predictions)
案例2:模型部署
在某些情况下,你可能需要将转换后的 Keras 模型部署到生产环境中。你可以将 Keras 模型保存为 HDF5 格式,并在生产环境中加载和使用。
# 保存 Keras 模型
k_model.save('deploy_model.h5')
# 在生产环境中加载模型
from tensorflow.keras.models import load_model
deploy_model = load_model('deploy_model.h5')
4. 典型生态项目
TensorFlow
TensorFlow 是一个广泛使用的深度学习框架,Keras 是其高级 API。ONNX2Keras 使得在 TensorFlow 环境中使用 ONNX 模型变得更加容易,从而扩展了 TensorFlow 的应用场景。
PyTorch
PyTorch 是另一个流行的深度学习框架,支持导出模型为 ONNX 格式。通过 ONNX2Keras,你可以将 PyTorch 模型转换为 Keras 模型,从而在 TensorFlow 环境中使用。
ONNX
ONNX 是一个开放的深度学习模型格式,支持多种框架之间的模型转换。ONNX2Keras 是 ONNX 生态系统中的一个重要工具,帮助开发者将 ONNX 模型转换为 Keras 模型。
通过这些生态项目的支持,ONNX2Keras 能够更好地服务于深度学习模型的转换和部署需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00