ONNX2Keras 项目教程
1. 项目介绍
ONNX2Keras 是一个用于将 ONNX 模型转换为 Keras 模型的开源工具。ONNX(Open Neural Network Exchange)是一种开放的深度学习模型格式,而 Keras 是 TensorFlow 的高级 API,广泛用于构建和训练深度学习模型。ONNX2Keras 的主要目的是简化从 ONNX 模型到 Keras 模型的转换过程,使得开发者可以更方便地在 Keras 环境中使用预训练的 ONNX 模型。
主要功能
- 模型转换:将 ONNX 模型转换为 Keras 模型。
- 输入形状覆盖:支持覆盖输入形状,方便适应不同的输入数据。
- 名称策略:支持不同的层命名策略,如短名称、重新编号等。
- 详细输出:提供详细的转换过程输出,便于调试和优化。
2. 项目快速启动
安装
首先,确保你已经安装了 TensorFlow 和 ONNX。然后,通过 pip 安装 ONNX2Keras:
pip install onnx2keras
使用示例
以下是一个简单的示例,展示如何将一个 ONNX 模型转换为 Keras 模型:
import onnx
from onnx2keras import onnx_to_keras
# 加载 ONNX 模型
onnx_model = onnx.load('resnet18.onnx')
# 转换为 Keras 模型
k_model = onnx_to_keras(onnx_model, ['input'])
# 保存 Keras 模型
k_model.save('resnet18.h5')
参数说明
onnx_model
:要转换的 ONNX 模型。input_names
:模型输入层的名称列表。input_shapes
:可选参数,覆盖输入形状。name_policy
:可选参数,层命名策略,如'short'
、'renumerate'
等。verbose
:是否输出详细信息,默认为True
。change_ordering
:是否改变数据排序,默认为False
。
3. 应用案例和最佳实践
案例1:图像分类模型的转换
假设你有一个预训练的图像分类模型,存储为 ONNX 格式。你可以使用 ONNX2Keras 将其转换为 Keras 模型,并在 Keras 环境中进行进一步的微调或推理。
import numpy as np
import onnx
from onnx2keras import onnx_to_keras
from tensorflow.keras.preprocessing import image
# 加载 ONNX 模型
onnx_model = onnx.load('image_classifier.onnx')
# 转换为 Keras 模型
k_model = onnx_to_keras(onnx_model, ['input'])
# 加载图像并进行预处理
img = image.load_img('test_image.jpg', target_size=(224, 224))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array /= 255.0
# 进行推理
predictions = k_model.predict(img_array)
print(predictions)
案例2:模型部署
在某些情况下,你可能需要将转换后的 Keras 模型部署到生产环境中。你可以将 Keras 模型保存为 HDF5 格式,并在生产环境中加载和使用。
# 保存 Keras 模型
k_model.save('deploy_model.h5')
# 在生产环境中加载模型
from tensorflow.keras.models import load_model
deploy_model = load_model('deploy_model.h5')
4. 典型生态项目
TensorFlow
TensorFlow 是一个广泛使用的深度学习框架,Keras 是其高级 API。ONNX2Keras 使得在 TensorFlow 环境中使用 ONNX 模型变得更加容易,从而扩展了 TensorFlow 的应用场景。
PyTorch
PyTorch 是另一个流行的深度学习框架,支持导出模型为 ONNX 格式。通过 ONNX2Keras,你可以将 PyTorch 模型转换为 Keras 模型,从而在 TensorFlow 环境中使用。
ONNX
ONNX 是一个开放的深度学习模型格式,支持多种框架之间的模型转换。ONNX2Keras 是 ONNX 生态系统中的一个重要工具,帮助开发者将 ONNX 模型转换为 Keras 模型。
通过这些生态项目的支持,ONNX2Keras 能够更好地服务于深度学习模型的转换和部署需求。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









