Darts时间序列预测中的超参数优化与验证集划分策略
2025-05-27 08:01:21作者:宣海椒Queenly
概述
在时间序列预测项目中,合理的超参数优化和验证集划分是确保模型性能的关键环节。本文将详细介绍如何在Darts框架中实现时间序列预测模型的超参数优化,特别是验证集的正确使用方法。
时间序列数据划分的特殊性
与传统机器学习不同,时间序列数据具有时间依赖性,因此不能简单地随机划分数据集。Darts框架提供了灵活的方法来处理这种特殊性。
典型的时间序列数据划分方案
对于时间范围从2020-01-01到2023-12-31的数据集,推荐采用以下划分方式:
- 训练集:2020-01-01至2022-01-01
- 验证集:2022-01-01至2022-12-31
- 测试集:2023-01-01至2023-12-31
这种划分保持了时间顺序,确保模型不会"看到"未来的数据。
超参数优化实现方法
在Darts中,可以通过以下步骤实现超参数优化:
- 定义目标函数:使用验证集评估模型性能
- 设置搜索空间:为每个超参数指定可能的取值范围
- 运行优化过程:使用Optuna等工具寻找最佳参数组合
关键代码实现
以下是超参数优化阶段的典型代码结构:
def objective(trial):
# 定义超参数搜索空间
forecast_horizon = 24
fc_lags_dict = {}
for feature in future_cov:
future_cov_lags_lower_bound = trial.suggest_int(f'fc_lb_{feature}', -96, -1)
future_cov_lags_upper_bound = trial.suggest_int(f'fc_up_{feature}', 1, 72)
fc_lags_dict[feature] = list(range(future_cov_lags_lower_bound, future_cov_lags_upper_bound))
# 构建模型
model = LinearRegressionModel(
lags=list(range(target_lags_lower_bound, 0)),
lags_past_covariates=None,
lags_future_covariates=fc_lags_dict,
output_chunk_length=forecast_horizon,
multi_models=True,
)
# 在验证集上评估模型
hf_results = model.historical_forecasts(
series=target_hf[:val_end],
past_covariates=None,
future_covariates=future_cov_hf,
start=val_start,
retrain=30,
forecast_horizon=24,
stride=24,
train_length=2160,
verbose=True,
last_points_only=False,
)
return return_metrics(hf_results)
最终测试阶段
完成超参数优化后,应在独立的测试集上评估模型性能:
# 使用优化后的参数构建最终模型
final_model = LinearRegressionModel(
lags=best_lags,
lags_past_covariates=None,
lags_future_covariates=best_fc_lags,
output_chunk_length=24,
multi_models=True,
)
# 在测试集上评估
test_results = final_model.historical_forecasts(
series=target_hf,
past_covariates=None,
future_covariates=future_cov_hf,
start=test_start,
retrain=30,
forecast_horizon=24,
stride=24,
train_length=2160,
verbose=True,
last_points_only=False,
)
高级应用:滚动窗口验证
对于需要更频繁更新超参数的情况,可以考虑实现滚动窗口验证策略:
- 定义多个连续的验证窗口
- 在每个窗口上独立进行超参数优化
- 汇总各窗口的优化结果
这种方法虽然计算成本较高,但能更好地适应时间序列中的概念漂移问题。
最佳实践建议
- 确保验证集足够大,能够代表数据的整体特性
- 考虑季节性因素,验证集应包含完整的季节性周期
- 记录每次实验的参数和结果,便于分析比较
- 在计算资源允许的情况下,增加验证集的数量或大小
通过合理的数据划分和超参数优化策略,可以在Darts框架中构建出性能优异的时间序列预测模型。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0118DuiLib_Ultimate
DuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
270

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
909
541

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
341
1.21 K

openGauss kernel ~ openGauss is an open source relational database management system
C++
142
188

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
377
387

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
63
58

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.1 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
87
4