使用ollamar包在R中集成本地语言模型Ollama
2025-06-02 13:52:33作者:平淮齐Percy
概述
ollamar是一个R语言包,它提供了与Ollama本地语言模型服务的无缝集成。Ollama允许用户在本地计算机上运行各种大型语言模型(LLM),而ollamar则让R用户能够轻松地在R环境中利用这些模型的强大功能。
安装与配置
系统要求
-
首先需要安装Ollama应用程序:
- macOS用户可下载对应的安装包
- Windows用户可使用预览版安装程序
- Linux用户可通过命令行安装
- 也支持Docker容器部署
-
安装完成后,启动Ollama应用程序以运行本地服务器。
R包安装
ollamar包提供两种安装方式:
# 稳定版安装
install.packages("ollamar")
# 开发版安装(包含最新功能和修复)
install.packages("remotes")
remotes::install_github("hauselin/ollamar")
核心功能使用指南
基础连接测试
library(ollamar)
test_connection() # 测试与Ollama服务器的连接
模型管理
- 查看已下载模型:
list_models()
- 下载新模型:
pull("llama3.1") # 下载llama3.1模型
- 删除模型:
delete("all-minilm:latest") # 删除指定模型
文本生成
基本文本生成功能:
# 简单生成
resp <- generate("llama3.1", "明天会是...")
resp_process(resp, "text") # 提取文本结果
# 直接返回文本
generate("llama3.1", "明天会是...", output = "text")
# 支持图片输入的多模态模型
generate("benzie/llava-phi-3", "图片中有什么?", images = "image.png", output = 'text')
对话功能
创建对话消息:
messages <- create_message("澳大利亚的首都是什么?")
resp <- chat("llama3.1", messages)
resp_process(resp, "text")
构建复杂对话历史:
messages <- create_messages(
create_message("你是一位知识渊博的导游。", role = "system"),
create_message("澳大利亚的首都是什么?"),
create_message("堪培拉", role = "assistant"),
create_message("它的人口有多少?")
)
chat("llama3.1", messages, output = "text")
嵌入向量
获取文本的嵌入表示:
# 获取嵌入向量
embedding <- embed("llama3.1", "你好,最近怎么样?")
# 计算相似度
e1 <- embed("llama3.1", "你好,最近怎么样?")
e2 <- embed("llama3.1", "嗨,你还好吗?")
相似度 <- sum(e1 * e2) # 余弦相似度
高级功能
工具调用
定义工具函数并集成到对话中:
# 定义加法工具
add_tool <- list(
type = "function",
function = list(
name = "add_numbers",
description = "两个数字相加",
parameters = list(
type = "object",
required = list("x", "y"),
properties = list(
x = list(type = "number"),
y = list(type = "number")
)
)
)
)
# 使用工具
msg <- create_message("3加4等于多少?")
resp <- chat("llama3.1", msg, tools = list(add_tool), output = "tools")
结构化输出
约束模型输出格式:
format <- list(
type = "object",
properties = list(
name = list(type = "string"),
capital = list(type = "string"),
population = list(type = "number")
),
required = list("name", "capital")
)
generate("llama3.1", "告诉我关于加拿大的信息",
output = "structured",
format = format)
并行请求
高效处理多个请求:
library(httr2)
prompts <- rep("讲一个5个词的故事", 5)
reqs <- lapply(prompts, function(p) generate("llama3.1", p, output = "req"))
resps <- req_perform_parallel(reqs)
sapply(resps, resp_process, "text")
最佳实践
-
模型选择:根据任务复杂度选择合适的模型,简单任务可用较小模型提高响应速度
-
温度参数:对于创造性任务可提高温度值,事实性任务则应降低
-
错误处理:始终检查返回状态是否为200 OK
-
资源管理:大模型会占用较多内存,注意系统资源使用情况
-
缓存策略:对重复查询考虑实现缓存机制提高效率
ollamar为R用户提供了强大的本地语言模型集成能力,特别适合需要数据隐私保护或离线使用的场景。通过合理利用其各种功能,可以在R环境中实现从简单文本生成到复杂对话系统的各种应用。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
475
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
225
94
暂无简介
Dart
725
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19