MMDetection中checkpoint保存错误类别名的原因分析与解决方案
2025-05-04 23:05:09作者:伍希望
在使用MMDetection框架进行目标检测模型训练时,开发者可能会遇到一个常见问题:即使自定义了数据集的类别名称,保存的checkpoint文件中仍然包含原始COCO数据集的80个类别名。本文将深入分析这一问题的根源,并提供有效的解决方案。
问题现象
当开发者使用自定义数据集训练目标检测模型时,通常会修改数据集类中的类别名称。例如,在COCODataset的子类中,开发者会覆盖METAINFO字典中的"classes"字段,以反映实际的类别名称。然而,在模型训练完成后,保存的checkpoint文件中dataset_meta["classes"]却仍然保留了原始的COCO类别名称。
问题根源分析
经过深入追踪MMDetection和MMEngine的代码实现,我们发现问题的根源在于类继承和初始化顺序:
- 元信息初始化时机:MMDetection中的数据集类在初始化时会先调用父类的
__init__方法,此时父类已经完成了METAINFO的初始化 - 子类覆盖失效:当开发者在子类的
__init__方法中尝试修改METAINFO时,父类的初始化已经完成,导致修改无法生效 - checkpoint保存机制:MMEngine在保存模型时,会从数据集的metainfo中提取类别信息,而此时获取的是父类初始化的值
解决方案
针对这一问题,我们推荐以下几种解决方案:
方案一:在类定义时覆盖METAINFO
class CustomCocoDataset(COCODataset):
METAINFO = {
'classes': ('person', 'car', 'truck', ...), # 你的自定义类别
'palette': [(220, 20, 60), (119, 11, 32), ...] # 自定义颜色
}
def __init__(self, **kwargs):
super().__init__(**kwargs)
# 其他初始化代码
这种方法通过在类定义时直接覆盖METAINFO,确保在父类初始化前就已经设置了正确的元信息。
方案二:通过配置文件指定metainfo
# 在配置文件中
train_dataloader = dict(
dataset=dict(
type='CustomCocoDataset',
metainfo=dict(
classes=('person', 'car', 'truck', ...),
palette=[(220, 20, 60), (119, 11, 32), ...]
)
)
)
这种方法通过配置参数传递metainfo,更加灵活且易于维护。
方案三:修改数据集注册时的默认metainfo
对于需要频繁使用的自定义数据集,可以在数据集注册时指定默认的metainfo:
@DATASETS.register_module()
class CustomCocoDataset(COCODataset):
METAINFO = {
'classes': ('person', 'car', 'truck', ...),
'palette': [(220, 20, 60), (119, 11, 32), ...]
}
验证解决方案
为确保解决方案有效,可以通过以下方式验证:
- 训练完成后检查checkpoint文件中的dataset_meta
- 使用demo脚本测试时观察显示的类别名称
- 在验证集上评估时确认指标计算使用的是正确的类别
最佳实践建议
- 一致性原则:确保训练、验证和测试阶段使用相同的metainfo
- 文档记录:在项目文档中明确记录数据集的类别定义
- 版本控制:当类别发生变化时,考虑创建新的数据集类而非修改现有类
- 可视化验证:定期通过可视化工具检查标注和预测结果是否符合预期
通过以上分析和解决方案,开发者可以确保MMDetection框架正确保存和使用自定义的类别名称,避免因类别不匹配导致的模型评估和应用问题。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.13 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
316
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219