MMDetection中RetinaNet训练结果为空的问题分析与解决方案
2025-05-04 18:39:51作者:滕妙奇
问题背景
在使用MMDetection框架训练RetinaNet模型时,很多开发者会遇到一个常见问题:训练过程中测试结果为空,即模型无法检测到任何目标。这种情况在使用自定义数据集时尤为常见,特别是当开发者从其他检测模型(如Faster R-CNN或CenterNet)迁移到RetinaNet时。
问题现象
训练日志显示测试结果为空,具体表现为:
- 训练过程中loss值正常下降
- 但在验证阶段,模型输出的检测框数量为0
- 评估指标(如mAP)显示为空或为0
根本原因分析
经过技术分析和实践验证,导致RetinaNet训练结果为空的主要原因有以下几点:
-
类别ID设置不当:在COCO格式的数据集中,类别ID应该从1开始编号,而不是0。RetinaNet对类别ID的起始值较为敏感。
-
学习率设置不合理:RetinaNet相比其他检测模型对学习率更为敏感,过大的学习率会导致模型无法正常收敛。
-
模型配置不匹配:自定义数据集的类别数量与配置文件中的num_classes参数不一致。
-
数据预处理问题:输入图像的尺寸、归一化参数等与模型预期不符。
解决方案
1. 正确设置类别ID
在COCO格式的标注文件中,确保:
- 类别ID从1开始编号
- 类别ID连续且无跳跃
- 类别数量与模型配置一致
示例标注文件片段:
{
"categories": [
{"id": 1, "name": "bottle"},
{"id": 2, "name": "cable"},
// 其他类别...
]
}
2. 调整学习率参数
RetinaNet推荐使用较小的学习率:
- 初始学习率建议设置在0.0005左右
- 使用学习率预热策略
- 配合适当的学习率衰减计划
配置示例:
optim_wrapper = dict(
optimizer=dict(
type='SGD',
lr=0.0005, # 较小的学习率
momentum=0.9,
weight_decay=0.0001),
type='OptimWrapper')
3. 验证模型配置
确保模型配置中的关键参数正确:
num_classes
与数据集类别数一致- 输入图像尺寸与预处理配置匹配
- 数据增强策略合理
4. 完整配置示例
以下是一个经过验证可用的RetinaNet配置示例(基于ResNet18 backbone):
model = dict(
type='RetinaNet',
backbone=dict(
type='ResNet',
depth=18,
norm_cfg=dict(type='BN'),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')),
neck=dict(
type='FPN',
in_channels=[64, 128, 256, 512],
out_channels=256,
start_level=1,
num_outs=5),
bbox_head=dict(
type='RetinaHead',
num_classes=15, # 必须与数据集类别数一致
in_channels=256,
stacked_convs=4,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
octave_base_scale=4,
scales_per_octave=3,
ratios=[0.5, 1.0, 2.0],
strides=[8, 16, 32, 64, 128]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
train_cfg=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1),
allowed_border=-1,
pos_weight=-1,
debug=False),
test_cfg=dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100))
实践建议
-
从小数据集开始:先用少量数据验证模型能否正常训练,再扩展到全量数据。
-
可视化验证:使用MMDetection提供的可视化工具检查数据加载是否正确。
-
监控训练过程:关注分类损失和回归损失的变化趋势。
-
逐步调参:先确保模型能输出检测结果,再优化性能指标。
通过以上方法,开发者可以有效解决RetinaNet训练结果为空的问题,并在此基础上进一步优化模型性能。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
207
2.2 K

暂无简介
Dart
519
115

Ascend Extension for PyTorch
Python
62
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193