MMDetection训练中ValueError: need at least one array to concatenate问题解析
2025-05-04 19:20:01作者:傅爽业Veleda
在使用MMDetection框架进行目标检测模型训练时,开发者可能会遇到"ValueError: need at least one array to concatenate"的错误。这个问题通常与数据集配置或数据加载过程有关,特别是在使用自定义数据集时容易出现。
问题现象
当运行MMDetection的训练脚本时,系统会抛出以下错误堆栈:
Traceback (most recent call last):
File "tools/train.py", line 121, in <module>
main()
File "tools/train.py", line 117, in main
runner.train()
...
File "<__array_function__ internals>", line 6, in concatenate
ValueError: need at least one array to concatenate
问题根源
这个错误的根本原因是数据集配置不完整,导致系统无法正确加载和序列化数据。具体来说,当MMDetection尝试将数据集信息序列化时,由于缺少必要的元信息(metainfo),导致无法创建有效的数据数组进行拼接。
解决方案
要解决这个问题,需要在数据加载器配置中添加完整的metainfo信息。metainfo应包含两个关键部分:
- classes:定义数据集的类别名称
- palette:定义各类别的显示颜色
配置示例:
metainfo = {
'classes': ('Other', 'Tin', 'Thatch'),
'palette': [
(220, 20, 60),
(96, 69, 60),
(220, 60, 100)
]
}
然后将这个metainfo添加到train_dataloader和test_dataloader的配置中:
train_dataloader = dict(
...,
dataset=dict(
...,
metainfo=metainfo,
...
)
)
深入理解
MMDetection框架在初始化数据集时,会尝试将数据集信息序列化以便高效处理。这个过程需要明确知道数据集的类别信息。如果没有提供metainfo,框架无法正确构建数据数组,导致在numpy.concatenate操作时失败。
对于自定义数据集,除了metainfo外,还需要确保:
- 数据集路径配置正确
- 标注文件格式符合COCO标准
- 图像路径与标注文件中的引用一致
- 类别ID从1开始连续编号
最佳实践
为了避免类似问题,建议在MMDetection中使用自定义数据集时:
- 始终定义完整的metainfo
- 验证标注文件的格式和内容
- 使用可视化工具检查数据加载是否正确
- 在完整训练前先运行少量样本测试
通过正确配置metainfo,不仅能解决数组拼接错误,还能确保训练过程中的类别显示和评估指标计算正确无误。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249