PyTorch 开源项目教程
2024-08-11 12:20:58作者:乔或婵
项目介绍
PyTorch 是一个基于 Torch 库的开源机器学习库,主要用于计算机视觉和自然语言处理等应用。它由 Meta AI(原 Facebook AI Research)开发,现已成为 Linux 基金会的一部分。PyTorch 以其灵活性和易用性著称,是当前最受欢迎的机器学习库之一,与 TensorFlow 并驾齐驱。
项目快速启动
安装 PyTorch
首先,确保你的环境中已经安装了 Python 3.8 或更高版本。然后,你可以通过以下命令使用 Conda 安装 PyTorch:
conda install pytorch torchvision -c pytorch
基本示例
以下是一个简单的 PyTorch 示例,展示了如何创建一个张量并进行基本的数学运算:
import torch
# 创建一个 2x2 的张量
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
# 张量加法
y = x + x
print(y)
应用案例和最佳实践
计算机视觉
PyTorch 在计算机视觉领域有着广泛的应用,例如使用卷积神经网络(CNN)进行图像分类。以下是一个简单的 CNN 模型示例:
import torch.nn as nn
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.fc = nn.Linear(32 * 14 * 14, 10)
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.pool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
自然语言处理
在自然语言处理领域,PyTorch 常用于构建和训练循环神经网络(RNN)和 Transformer 模型。以下是一个简单的 LSTM 模型示例:
import torch.nn as nn
class SimpleLSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(SimpleLSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
典型生态项目
PyTorch Lightning
PyTorch Lightning 是一个轻量级的 PyTorch 封装,旨在简化深度学习模型的训练和验证过程。它提供了许多高级功能,如自动混合精度训练、多 GPU 支持等。
Hugging Face Transformers
Hugging Face 的 Transformers 库是一个广泛使用的自然语言处理库,提供了许多预训练的 Transformer 模型,如 BERT、GPT 等。它与 PyTorch 无缝集成,使得使用这些模型变得非常简单。
Catalyst
Catalyst 是一个用于深度学习研究和生产的 PyTorch 框架,提供了许多实用工具和抽象,帮助开发者快速构建和迭代模型。
通过这些生态项目,PyTorch 的生态系统变得更加丰富和强大,为开发者提供了更多的选择和便利。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178