PyTorch 开源项目教程
2024-08-11 12:20:58作者:乔或婵
项目介绍
PyTorch 是一个基于 Torch 库的开源机器学习库,主要用于计算机视觉和自然语言处理等应用。它由 Meta AI(原 Facebook AI Research)开发,现已成为 Linux 基金会的一部分。PyTorch 以其灵活性和易用性著称,是当前最受欢迎的机器学习库之一,与 TensorFlow 并驾齐驱。
项目快速启动
安装 PyTorch
首先,确保你的环境中已经安装了 Python 3.8 或更高版本。然后,你可以通过以下命令使用 Conda 安装 PyTorch:
conda install pytorch torchvision -c pytorch
基本示例
以下是一个简单的 PyTorch 示例,展示了如何创建一个张量并进行基本的数学运算:
import torch
# 创建一个 2x2 的张量
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
# 张量加法
y = x + x
print(y)
应用案例和最佳实践
计算机视觉
PyTorch 在计算机视觉领域有着广泛的应用,例如使用卷积神经网络(CNN)进行图像分类。以下是一个简单的 CNN 模型示例:
import torch.nn as nn
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.fc = nn.Linear(32 * 14 * 14, 10)
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.pool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
自然语言处理
在自然语言处理领域,PyTorch 常用于构建和训练循环神经网络(RNN)和 Transformer 模型。以下是一个简单的 LSTM 模型示例:
import torch.nn as nn
class SimpleLSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(SimpleLSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
典型生态项目
PyTorch Lightning
PyTorch Lightning 是一个轻量级的 PyTorch 封装,旨在简化深度学习模型的训练和验证过程。它提供了许多高级功能,如自动混合精度训练、多 GPU 支持等。
Hugging Face Transformers
Hugging Face 的 Transformers 库是一个广泛使用的自然语言处理库,提供了许多预训练的 Transformer 模型,如 BERT、GPT 等。它与 PyTorch 无缝集成,使得使用这些模型变得非常简单。
Catalyst
Catalyst 是一个用于深度学习研究和生产的 PyTorch 框架,提供了许多实用工具和抽象,帮助开发者快速构建和迭代模型。
通过这些生态项目,PyTorch 的生态系统变得更加丰富和强大,为开发者提供了更多的选择和便利。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1