Yamato-Security Hayabusa项目中Sigma关联规则的引用规则处理机制
2025-06-30 14:33:46作者:胡唯隽
摘要
在安全事件检测与分析领域,Sigma规则引擎提供了一种强大的方式来定义和检测安全事件。本文将深入探讨Yamato-Security Hayabusa项目中Sigma关联规则对引用规则的处理机制,特别是如何优雅地处理被引用的子规则输出问题。
Sigma关联规则基础
Sigma关联规则允许安全分析师创建基于多个子规则组合的复杂检测逻辑。一个典型的关联规则包含以下几个关键组成部分:
- 规则类型:定义关联的方式,如值计数(value_count)
- 引用规则列表:指定参与关联的子规则
- 分组字段:确定如何对事件进行分组关联
- 时间窗口:关联事件的时间范围
- 条件表达式:触发关联的条件
引用规则处理机制
Hayabusa项目在处理Sigma关联规则时,采用了一种智能的引用规则处理策略:
- 默认行为:当规则被关联规则引用时,默认不会单独输出这些被引用规则的检测结果
- 例外情况:只有当关联规则中显式设置了
generate: true参数时,才会同时输出被引用规则的检测结果
这种设计带来了几个显著优势:
- 减少冗余输出:避免了相同事件在结果中重复出现
- 简化分析流程:分析师可以专注于关联事件模式而非单个事件
- 提高效率:减少了需要处理和存储的数据量
实现细节
在技术实现层面,Hayabusa项目通过以下方式处理引用规则:
- 规则加载阶段:解析所有Sigma规则时,识别关联规则及其引用的子规则
- 引用关系构建:建立关联规则与子规则之间的映射关系
- 执行决策:根据
generate参数决定是否执行并输出子规则
实际应用示例
考虑一个检测登录失败场景的关联规则示例:
title: 登录失败模式检测
id: 0e95725d-7320-415d-80f7-004da920fc11
level: medium
correlation:
type: value_count
rules:
- 用户名不存在规则
- 密码错误规则
group-by:
- Computer
timespan: 5m
condition:
gte: 2
field: SubStatus
在这个案例中,系统只会输出满足关联条件的复合事件,而不会单独输出"用户名不存在"或"密码错误"的单个事件,除非特别配置。
最佳实践建议
基于Hayabusa项目的这一特性,安全团队可以遵循以下最佳实践:
- 合理设计关联规则:将逻辑相关的检测规则组织在一起
- 谨慎使用generate参数:仅在需要调试或特殊分析时启用子规则输出
- 模块化规则设计:创建可重用的基础检测规则,供多个关联规则引用
- 性能考量:对于高频事件类型,优先使用关联规则而非单独规则
结论
Yamato-Security Hayabusa项目对Sigma关联规则中引用规则的处理机制体现了高效、灵活的设计理念。通过智能控制子规则的输出,既满足了复杂检测场景的需求,又避免了结果冗余,为安全运营团队提供了更清晰、更有价值的安全事件视图。这一设计在处理大规模安全日志时尤其重要,能够显著提升安全事件检测和分析的效率。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137