RecBole 项目安装与使用教程
2024-09-16 01:24:23作者:滑思眉Philip
1. 项目目录结构及介绍
RecBole 项目的目录结构如下:
RecBole/
├── dataset/
│ └── ml-100k/
├── docs/
├── recbole/
├── run_example/
├── tests/
├── .gitignore
├── LICENSE
├── MANIFEST.in
├── README.md
├── README_CN.md
├── hyper_test/
├── requirements.txt
├── run_hyper.py
├── run_recbole.py
├── run_recbole_group.py
├── run_test.sh
├── setup.py
├── significance_test.py
└── style.cfg
目录结构介绍
dataset/: 存放推荐系统常用的数据集,例如ml-100k。docs/: 存放项目的文档文件。recbole/: 核心代码库,包含推荐算法的实现。run_example/: 存放运行示例的脚本。tests/: 存放测试脚本和测试数据。.gitignore: Git 忽略文件配置。LICENSE: 项目许可证文件。MANIFEST.in: 打包配置文件。README.md: 项目英文介绍文件。README_CN.md: 项目中文介绍文件。hyper_test/: 超参数测试相关文件。requirements.txt: 项目依赖库列表。run_hyper.py: 超参数搜索脚本。run_recbole.py: 推荐算法运行脚本。run_recbole_group.py: 推荐算法分组运行脚本。run_test.sh: 测试脚本。setup.py: 项目安装脚本。significance_test.py: 显著性测试脚本。style.cfg: 代码风格配置文件。
2. 项目启动文件介绍
run_recbole.py
run_recbole.py 是 RecBole 项目的主要启动文件,用于运行推荐算法模型。该脚本默认会运行 BPR 模型在 ml-100k 数据集上。
使用示例
python run_recbole.py
参数说明
--model: 指定要运行的推荐算法模型,例如--model=BPR。--dataset: 指定要使用的数据集,例如--dataset=ml-100k。--config_files: 指定配置文件路径,例如--config_files=config.yaml。
run_hyper.py
run_hyper.py 用于自动搜索最佳超参数。
使用示例
python run_hyper.py --model=BPR --dataset=ml-100k --config_files=config.yaml --params_file=hyper_test
3. 项目配置文件介绍
RecBole 项目的配置文件通常使用 YAML 格式,用于指定模型的超参数、数据集路径、评估设置等。
配置文件示例
# 数据集配置
dataset:
name: ml-100k
path: dataset/ml-100k
# 模型配置
model:
name: BPR
embedding_size: 64
learning_rate: 0.001
# 评估配置
evaluation:
metrics: [recall@10, mrr@10, ndcg@10]
split_ratio: [0.8, 0.1, 0.1]
配置文件参数说明
dataset: 数据集相关配置,包括数据集名称和路径。model: 模型相关配置,包括模型名称、嵌入大小、学习率等。evaluation: 评估相关配置,包括评估指标和数据集分割比例。
通过以上配置文件,用户可以灵活地调整推荐算法的参数和评估设置,以适应不同的研究需求。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
288
2.59 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
225
304
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
605
180
暂无简介
Dart
575
127
Ascend Extension for PyTorch
Python
114
144
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
609
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
450
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
75
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
136
57