RecBole 项目安装与使用教程
2024-09-16 02:51:16作者:滑思眉Philip
1. 项目目录结构及介绍
RecBole 项目的目录结构如下:
RecBole/
├── dataset/
│ └── ml-100k/
├── docs/
├── recbole/
├── run_example/
├── tests/
├── .gitignore
├── LICENSE
├── MANIFEST.in
├── README.md
├── README_CN.md
├── hyper_test/
├── requirements.txt
├── run_hyper.py
├── run_recbole.py
├── run_recbole_group.py
├── run_test.sh
├── setup.py
├── significance_test.py
└── style.cfg
目录结构介绍
dataset/: 存放推荐系统常用的数据集,例如ml-100k。docs/: 存放项目的文档文件。recbole/: 核心代码库,包含推荐算法的实现。run_example/: 存放运行示例的脚本。tests/: 存放测试脚本和测试数据。.gitignore: Git 忽略文件配置。LICENSE: 项目许可证文件。MANIFEST.in: 打包配置文件。README.md: 项目英文介绍文件。README_CN.md: 项目中文介绍文件。hyper_test/: 超参数测试相关文件。requirements.txt: 项目依赖库列表。run_hyper.py: 超参数搜索脚本。run_recbole.py: 推荐算法运行脚本。run_recbole_group.py: 推荐算法分组运行脚本。run_test.sh: 测试脚本。setup.py: 项目安装脚本。significance_test.py: 显著性测试脚本。style.cfg: 代码风格配置文件。
2. 项目启动文件介绍
run_recbole.py
run_recbole.py 是 RecBole 项目的主要启动文件,用于运行推荐算法模型。该脚本默认会运行 BPR 模型在 ml-100k 数据集上。
使用示例
python run_recbole.py
参数说明
--model: 指定要运行的推荐算法模型,例如--model=BPR。--dataset: 指定要使用的数据集,例如--dataset=ml-100k。--config_files: 指定配置文件路径,例如--config_files=config.yaml。
run_hyper.py
run_hyper.py 用于自动搜索最佳超参数。
使用示例
python run_hyper.py --model=BPR --dataset=ml-100k --config_files=config.yaml --params_file=hyper_test
3. 项目配置文件介绍
RecBole 项目的配置文件通常使用 YAML 格式,用于指定模型的超参数、数据集路径、评估设置等。
配置文件示例
# 数据集配置
dataset:
name: ml-100k
path: dataset/ml-100k
# 模型配置
model:
name: BPR
embedding_size: 64
learning_rate: 0.001
# 评估配置
evaluation:
metrics: [recall@10, mrr@10, ndcg@10]
split_ratio: [0.8, 0.1, 0.1]
配置文件参数说明
dataset: 数据集相关配置,包括数据集名称和路径。model: 模型相关配置,包括模型名称、嵌入大小、学习率等。evaluation: 评估相关配置,包括评估指标和数据集分割比例。
通过以上配置文件,用户可以灵活地调整推荐算法的参数和评估设置,以适应不同的研究需求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
353
420
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
616
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
339
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
142
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759