Neural Graph Collaborative Filtering (NGCF) 项目教程
2024-09-13 15:33:49作者:牧宁李
项目介绍
Neural Graph Collaborative Filtering (NGCF) 是一个基于图神经网络的推荐系统框架。该项目通过利用用户-物品交互的图结构,在嵌入传播过程中显式地注入协同信号,从而提高推荐系统的性能。NGCF 的核心思想是通过在用户-物品图上传播嵌入来建模高阶连通性,从而更好地捕捉协同过滤效果。
项目快速启动
环境准备
在开始之前,请确保您的环境中已经安装了以下依赖:
- Python 3.6+
- PyTorch 1.0+
- NumPy
- Pandas
安装项目
首先,克隆项目到本地:
git clone https://github.com/xiangwang1223/neural_graph_collaborative_filtering.git
cd neural_graph_collaborative_filtering
运行示例
以下是一个简单的示例代码,展示了如何使用 NGCF 进行推荐:
import torch
from NGCF import NGCF
from dataset import DataLoader
# 加载数据
data_loader = DataLoader('data/example_data.csv')
train_data, test_data = data_loader.load_data()
# 初始化模型
model = NGCF(n_users=data_loader.n_users, n_items=data_loader.n_items, n_factors=64)
# 训练模型
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(10):
model.train()
optimizer.zero_grad()
loss = model(train_data)
loss.backward()
optimizer.step()
print(f'Epoch {epoch+1}, Loss: {loss.item()}')
# 测试模型
model.eval()
with torch.no_grad():
test_loss = model(test_data)
print(f'Test Loss: {test_loss.item()}')
应用案例和最佳实践
应用案例
NGCF 可以广泛应用于各种推荐系统场景,例如:
- 电子商务推荐:为用户推荐他们可能感兴趣的商品。
- 社交媒体推荐:推荐用户可能感兴趣的内容或好友。
- 视频流媒体推荐:为用户推荐他们可能喜欢的电影或电视剧。
最佳实践
- 数据预处理:确保数据集中的用户和物品信息是干净的,并且交互数据是完整的。
- 超参数调优:通过交叉验证等方法调整模型的超参数,如嵌入维度、学习率等。
- 模型评估:使用多种评估指标(如准确率、召回率、F1 分数等)来评估模型的性能。
典型生态项目
- PyTorch Geometric:一个用于图神经网络的 PyTorch 扩展库,可以与 NGCF 结合使用,增强图结构的处理能力。
- LightGCN:另一个基于图神经网络的推荐系统模型,可以与 NGCF 进行对比实验,评估不同模型的性能。
- RecBole:一个推荐系统库,提供了多种推荐算法的实现,可以作为 NGCF 的基准测试工具。
通过本教程,您应该能够快速上手使用 NGCF 进行推荐系统的开发和研究。希望这个项目能够帮助您在推荐系统领域取得更好的成果!
热门项目推荐
相关项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
探索开源漫画阅读器ComicFlow:安装与使用教程 《lest测试框架的安装与使用教程》 《DS3232RTC库的安装与使用教程》 《ROS-Industrial 基础培训教程:industrial_training 的安装与使用》 深入理解CascaDB:安装与使用教程 《macOS Cross toolchain for Linux和*BSD的安装与使用教程》 《SkyFireEMU的安装与使用教程》 探索音频合成的艺术:Tonic开源项目入门教程 深入探索Android JniBitmapOperations:安装与使用教程 深入浅出:mapnik-vector-tile的安装与使用教程
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
263
54
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
open-eBackup
open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
85
63
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
xxl-job
XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
Java
9
0
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
171
41
RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
38
24
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
332
27