RecBole 开源项目教程
2024-09-13 03:36:20作者:劳婵绚Shirley
1. 项目介绍
RecBole 是一个基于 Python 和 PyTorch 实现的推荐系统代码库,旨在为研究者提供一个统一、全面且高效的框架,用于复现和开发推荐算法。RecBole 支持多种推荐任务,包括通用推荐、序列推荐、基于内容的推荐和基于知识的推荐。项目提供了超过 100 种常用的推荐算法,并支持 43 个推荐数据集的格式化副本。
RecBole 的主要特点包括:
- 通用和可扩展的数据结构:支持各种推荐数据集的统一格式和使用。
- 全面的基准模型和数据集:实现了百余种推荐算法,并提供了 43 个推荐数据集的格式化副本。
- 大规模的标准评测:支持一系列被广泛认可的评估方式来测试和比较不同的推荐算法。
2. 项目快速启动
安装 RecBole
RecBole 可以通过 pip、conda 或源代码安装。以下是三种安装方式的详细步骤:
通过 pip 安装
pip install recbole
通过 conda 安装
conda install -c aibox recbole
通过源代码安装
git clone https://github.com/RUCAIBox/RecBole.git
cd RecBole
pip install -e . --verbose
快速启动示例
安装完成后,可以使用以下代码快速启动 RecBole 并运行一个简单的推荐模型:
# 运行 RecBole 示例
python run_recbole.py
该脚本将运行 BPR 模型在 ml-100k 数据集上。通常,这个示例在一分钟内完成。
3. 应用案例和最佳实践
应用案例
RecBole 可以应用于多种推荐场景,例如:
- 电商推荐:根据用户的历史购买记录推荐商品。
- 新闻推荐:根据用户的阅读历史推荐新闻文章。
- 电影推荐:根据用户的观影历史推荐电影。
最佳实践
自定义模型参数
可以通过设置额外的命令参数来调整模型的参数,例如学习率和嵌入大小:
python run_recbole.py --learning_rate=0.0001 --embedding_size=128
自动调参
RecBole 支持自动调参功能,可以通过设置参数列表进行自动搜索最佳参数:
python run_hyper.py --model=BPR --dataset=ml-100k --config_files=test.yaml --params_file=hyper_test
4. 典型生态项目
RecBole 作为一个推荐系统框架,拥有多个相关的生态项目,包括:
- RecBole-MetaRec:用于元学习的推荐系统工具包。
- RecBole-DA:用于数据增强的推荐系统工具包。
- RecBole-Debias:用于去偏的推荐系统工具包。
- RecBole-FairRec:用于公平性研究的推荐系统工具包。
- RecBole-CDR:用于跨域推荐的推荐系统工具包。
- RecBole-TRM:基于 Transformer 的推荐系统工具包。
- RecBole-GNN:基于图神经网络的推荐系统工具包。
- RecBole-PJF:用于人岗匹配的推荐系统工具包。
这些生态项目扩展了 RecBole 的功能,使其能够支持更多复杂的推荐任务和研究方向。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249