ShadeSketch 项目使用教程
2024-09-28 19:27:39作者:翟江哲Frasier
1. 项目目录结构及介绍
ShadeSketch 项目的目录结构如下:
ShadeSketch/
├── ShadeSketchDataset/
│ ├── images/
│ ├── models/
│ ├── output/
│ ├── val/
│ └── weightsweights/
├── .gitattributes
├── .gitignore
├── LICENSE
├── README.md
├── layers.py
├── model.py
├── predict.py
├── predict_anim.py
├── requirements.txt
├── train_tf1.py
├── train_tf2.py
└── utils.py
目录结构介绍
- ShadeSketchDataset/: 包含项目所需的数据集,包括图像、模型、输出、验证数据和权重文件。
- images/: 存放图像数据。
- models/: 存放模型文件。
- output/: 存放输出结果。
- val/: 存放验证数据。
- weights/: 存放权重文件。
- .gitattributes: Git 属性配置文件。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文档。
- layers.py: 定义模型层的 Python 文件。
- model.py: 定义模型的 Python 文件。
- predict.py: 用于预测的 Python 文件。
- predict_anim.py: 用于动画预测的 Python 文件。
- requirements.txt: 项目依赖的 Python 包列表。
- train_tf1.py: 用于 TensorFlow 1.x 版本训练的 Python 文件。
- train_tf2.py: 用于 TensorFlow 2.x 版本训练的 Python 文件。
- utils.py: 项目工具函数文件。
2. 项目启动文件介绍
train_tf1.py
- 功能: 用于在 TensorFlow 1.x 版本下训练模型。
- 使用方法:
python train_tf1.py
train_tf2.py
- 功能: 用于在 TensorFlow 2.x 版本下训练模型。
- 使用方法:
python train_tf2.py
predict.py
- 功能: 用于单个光照方向的预测。
- 使用方法:
python predict.py --use-smooth --use-norm --direction 810 --input-dir YOUR_DIR
predict_anim.py
- 功能: 用于改变光照方向的动画预测。
- 使用方法:
python predict_anim.py --use-smooth --use-norm --light-depth front --input YOUR_IMAGE
3. 项目配置文件介绍
requirements.txt
- 功能: 列出项目所需的 Python 包及其版本。
- 使用方法:
pip install -r requirements.txt
LICENSE
- 功能: 项目的许可证文件,说明项目的使用许可。
- 内容: MIT 许可证。
.gitignore
- 功能: 指定 Git 忽略的文件和目录。
- 内容: 通常包含不需要版本控制的文件和目录,如临时文件、缓存文件等。
.gitattributes
- 功能: 配置 Git 的属性,如文件的换行符处理等。
- 内容: 根据项目需求配置。
通过以上介绍,您可以更好地理解和使用 ShadeSketch 项目。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355