开源项目教程:Google Landmark 2019竞赛一等奖&三等奖解决方案
2024-09-28 23:16:20作者:卓艾滢Kingsley
一、项目目录结构及介绍
此项目是2019年Google Landmark检索挑战赛的第一名与识别挑战赛的第三名解决方案。以下是其核心目录结构:
Landmark2019-1st-and-3rd-Place-Solution/
├── docker # Docker配置文件夹,用于环境复现
│ └── Dockerfile # Dockerfile,指导如何构建运行环境
├── exp # 实验代码目录,包含模型训练与预测脚本
│ ├── train.py # 训练模型的脚本
│ ├── predict.py # 单GPU预测脚本
│ └── multigpu_predict.py # 多GPU预测脚本
├── notebooks # 可能包含实验分析或数据预处理的Jupyter Notebook
├── prepare_cleaned_subset.sh # 清洗GLD-v2数据集的脚本
├── data # (假设)数据存储路径,尽管实际数据需从Kaggle下载
├── LICENSE # 许可证文件,采用Apache-2.0许可协议
└── README.md # 项目说明文档,包含重要信息与使用指引
注:具体文件可能有微调,确保查看仓库最新版本。
二、项目的启动文件介绍
主要启动文件:
-
train.py: 使用此脚本开始模型的训练过程,可以通过命令行参数指定不同的GPU设备和训练设置。
python train.py tuning -d 0 1 2 3 --n-gpu 2上述命令表示在四个GPU上进行训练,每次分配两个GPU进行单个任务的训练。
-
predict.py: 进行模型预测,适用于单个GPU。
python predict.py -m <model_path> -d <gpu_id> -
multigpu_predict.py: 支持多GPU的预测模式,适合并行处理预测任务。
python multigpu_predict.py -m <model_path> --scale L2 --ms -b 32 -d 0 1
这里,<model_path>应替换为您想要使用的预训练模型的路径,而-d后面跟随的是GPU编号。
三、项目的配置文件介绍
本项目的核心配置并不直接体现在单独的配置文件中,而是通过脚本中的参数或者环境变量来进行管理。例如,在执行训练和预测时,通过命令行参数传递来定制行为。不过,对于复杂的配置调整,如网络架构、学习率等,通常会在脚本内部或通过脚本读取的特定变量(假设在某些脚本中有定义)来完成。
如果需要更详细的配置管理,开发者可能会依赖于环境变量设定、.ini文件或其他自定义方式,但根据提供的资料,没有明确的配置文件路径。因此,用户需仔细阅读各脚本内的注释和命令行参数说明,以了解如何调整这些高级设置。
以上就是关于“Google Landmark 2019竞赛一等奖&三等奖解决方案”开源项目的快速入门指南,确保在操作前已正确安装所有必要的依赖,并理解数据集获取和预处理步骤。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178