首页
/ 高效音频标签工具:Argus解决方案 - Freesound Audio Tagging 2019

高效音频标签工具:Argus解决方案 - Freesound Audio Tagging 2019

2024-05-21 16:16:52作者:邬祺芯Juliet

Argus 解决方案是针对Freesound Audio Tagging 2019挑战赛的第一名获奖作品,该比赛旨在开发一个自动多标签音频分类算法,巧妙地结合了少量可靠的人工标注数据和大量网络上的噪声音频数据进行多标签分类任务,涵盖80个类别。

项目简介

该项目基于PyTorch的Argus框架构建,通过日志尺度的梅尔谱图、卷积神经网络(CNN)模型、注意力机制、跳跃连接和辅助分类器等先进技术,以及数据增强策略如SpecAugment和Mixup,实现了高效音频标签。特别的是,团队还对选定的低分样本进行了手工重标记,进一步提高了模型的准确性。

技术分析

在数据预处理阶段,项目采用44.1kHz采样率、345 * 2步长的log-scale mel-spectrograms,以及一系列参数,如最小频率20Hz,最大频率为采样率的一半,128个梅尔频率通道等。此外,借鉴daisukelab的数据预处理笔记本,将音频转换为谱图。

在增强策略上,项目应用了多种技术,包括对时间轴上256值的随机裁剪、随机调整大小的裁剪、SpecAugment(频率和时间块的遮罩)以及MixUp,以提高模型的泛化能力。同时,SigmoidConcatMixer将不同音频片段平滑过渡,产生融合样本。

模型架构参考了mhiro2的内核,并进行了优化,加入了注意力、跳跃连接和辅助分类器,形成了更强大的表示能力。

训练过程中,采用了五折交叉验证、BCE损失函数(用于curated数据集)、Lsoft损失函数(用于noisy数据集),以及Adam优化器,并结合学习率调度策略。特别是,对低lwlrap分数的样本重新进行训练,并利用高lwlrap分数的样本进行BCE训练,使用混合精度训练来扩大批处理大小。

应用场景

Argus解决方案不仅适用于音频分类竞赛,也适合于实际中的音频识别系统,例如智能助手、智能家居、语音搜索和音频监控等领域。

项目特点

  1. 结合有噪声和无噪声数据:通过集成小规模的准确数据和大规模的噪声数据,实现多标签分类。
  2. 创新的数据增强:采用SpecAugment和Mixup,增强了模型的泛化能力和鲁棒性。
  3. 高效的模型设计:引入注意力机制、跳跃连接和辅助分类器,提升模型性能。
  4. 灵活的训练策略:依据样本质量和模型表现动态调整训练策略,增加模型适应性。
  5. 强大的堆叠式集成:通过几何平均方法,组合多个模型的预测结果,提升整体性能。

总的来说,Argus解决方案以其独特的设计理念和技术手段,展示了在音频处理领域的强大实力,是任何关注音频识别或机器学习领域开发者值得尝试和学习的开源项目。立即下载并试用,开启您的音频识别之旅吧!

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
54
469
kernelkernel
deepin linux kernel
C
22
5
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
880
519
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
181
264
cjoycjoy
一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
361
381
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
613
60