首页
/ 高效音频标签工具:Argus解决方案 - Freesound Audio Tagging 2019

高效音频标签工具:Argus解决方案 - Freesound Audio Tagging 2019

2024-05-21 16:16:52作者:邬祺芯Juliet

Argus 解决方案是针对Freesound Audio Tagging 2019挑战赛的第一名获奖作品,该比赛旨在开发一个自动多标签音频分类算法,巧妙地结合了少量可靠的人工标注数据和大量网络上的噪声音频数据进行多标签分类任务,涵盖80个类别。

项目简介

该项目基于PyTorch的Argus框架构建,通过日志尺度的梅尔谱图、卷积神经网络(CNN)模型、注意力机制、跳跃连接和辅助分类器等先进技术,以及数据增强策略如SpecAugment和Mixup,实现了高效音频标签。特别的是,团队还对选定的低分样本进行了手工重标记,进一步提高了模型的准确性。

技术分析

在数据预处理阶段,项目采用44.1kHz采样率、345 * 2步长的log-scale mel-spectrograms,以及一系列参数,如最小频率20Hz,最大频率为采样率的一半,128个梅尔频率通道等。此外,借鉴daisukelab的数据预处理笔记本,将音频转换为谱图。

在增强策略上,项目应用了多种技术,包括对时间轴上256值的随机裁剪、随机调整大小的裁剪、SpecAugment(频率和时间块的遮罩)以及MixUp,以提高模型的泛化能力。同时,SigmoidConcatMixer将不同音频片段平滑过渡,产生融合样本。

模型架构参考了mhiro2的内核,并进行了优化,加入了注意力、跳跃连接和辅助分类器,形成了更强大的表示能力。

训练过程中,采用了五折交叉验证、BCE损失函数(用于curated数据集)、Lsoft损失函数(用于noisy数据集),以及Adam优化器,并结合学习率调度策略。特别是,对低lwlrap分数的样本重新进行训练,并利用高lwlrap分数的样本进行BCE训练,使用混合精度训练来扩大批处理大小。

应用场景

Argus解决方案不仅适用于音频分类竞赛,也适合于实际中的音频识别系统,例如智能助手、智能家居、语音搜索和音频监控等领域。

项目特点

  1. 结合有噪声和无噪声数据:通过集成小规模的准确数据和大规模的噪声数据,实现多标签分类。
  2. 创新的数据增强:采用SpecAugment和Mixup,增强了模型的泛化能力和鲁棒性。
  3. 高效的模型设计:引入注意力机制、跳跃连接和辅助分类器,提升模型性能。
  4. 灵活的训练策略:依据样本质量和模型表现动态调整训练策略,增加模型适应性。
  5. 强大的堆叠式集成:通过几何平均方法,组合多个模型的预测结果,提升整体性能。

总的来说,Argus解决方案以其独特的设计理念和技术手段,展示了在音频处理领域的强大实力,是任何关注音频识别或机器学习领域开发者值得尝试和学习的开源项目。立即下载并试用,开启您的音频识别之旅吧!

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
610
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
111
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
57
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
376
36
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0