GLiNER项目训练过程中评估损失计算问题的分析与解决
2025-07-05 13:29:29作者:侯霆垣
问题背景
在GLiNER项目(一个基于Transformer的实体识别框架)的训练过程中,用户尝试通过设置load_best_model_at_end参数来启用模型评估功能时遇到了技术障碍。具体表现为训练器(Trainer)无法正确计算评估集上的损失值(eval_loss),导致无法基于评估指标选择最佳模型。
问题本质分析
该问题的核心在于GLiNER项目的训练器实现与HuggingFace Trainer类的评估机制不完全兼容。当用户启用评估功能时,训练器会按指定步数在评估集上运行推理,但缺少必要的评估指标计算逻辑,特别是评估损失的计算。
技术细节
- 评估机制流程:训练过程中,Trainer类会调用
_maybe_log_save_evaluate方法,该方法会触发评估流程 - 关键缺失环节:原实现缺少对评估集损失计算的逻辑,导致无法获取
eval_loss指标 - 影响范围:这一问题不仅影响模型选择,还使得用户无法监控训练过程中的过拟合情况
解决方案
项目维护者通过以下方式解决了这一问题:
- 自定义预测步骤:在Trainer类中添加了专门的
prediction_step函数 - 评估损失计算:实现了评估集上的损失计算逻辑,确保能正确生成
eval_loss指标 - 兼容性改进:保持了与HuggingFace Trainer原有功能的兼容性
技术实现要点
新实现的预测步骤函数主要处理以下关键任务:
- 前向传播计算
- 损失值提取
- 评估指标生成
- 与原有训练流程的无缝集成
实际应用价值
这一改进使得GLiNER项目能够:
- 在训练过程中有效监控模型性能
- 基于评估指标自动选择最佳模型
- 及时发现并防止过拟合现象
- 为超参数优化提供可靠依据
总结
通过对Trainer类的评估机制进行定制化改进,GLiNER项目现在能够完整支持训练过程中的模型评估功能。这一改进不仅解决了技术障碍,还提升了框架的实用性和可靠性,为用户提供了更完善的模型训练体验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134