Awesome-Efficient-Segment-Anything 的项目扩展与二次开发
2025-06-21 14:55:05作者:咎岭娴Homer
项目的基础介绍
Awesome-Efficient-Segment-Anything 是一个开源项目,旨在收集和整理一系列高效的 Segment Anything 模型(SAM)。Segment Anything 模型自从推出以来,由于其强大的图像分割能力而受到了广泛关注。然而,原始的 SAM 模型对于计算资源的需求较高,不适合在资源受限的设备上部署。本项目汇总了多种优化后的 SAM 模型,这些模型在保持性能的同时,大大降低了计算复杂度和资源需求。
项目的核心功能
项目的核心功能是提供了一系列轻量级的 SAM 模型,这些模型包括基于知识蒸馏、模型剪枝、训练加速等多种技术优化后的版本。这些轻量级模型使得 SAM 在移动设备、边缘设备等资源受限的环境中得以高效运行,为各种实际应用场景提供了可能性。
项目使用了哪些框架或库?
该项目主要使用了以下框架或库:
- PyTorch:深度学习框架,用于模型的开发和训练。
- NumPy:科学计算库,用于数值计算。
- Matplotlib、Seaborn:数据可视化库,用于绘图和展示结果。
项目的代码目录及介绍
项目的代码目录结构如下:
Awesome-Efficient-Segment-Anything
├── assets
├── LICENSE
├── README.md
├──Scratch Training Methods
│ ├── FastSAM
│ └── Lite-SAM
├── Knowledge Distillation Methods
│ ├── MobileSAM
│ ├── EdgeSAM
│ ├── EfficientSAM
│ ├── EfficientViT-SAM
│ ├── RepViT-SAM
│ ├── SAM-LIGHTENING
│ └── TinySAM
├── Model Pruning Methods
│ └── SlimSAM
└── Training Free Methods
└── Expedit-SAM
README.md:项目说明文件,包含了项目的基本信息和使用说明。assets:资源文件夹,可能包含示例图片、模型权重等。Scratch Training Methods、Knowledge Distillation Methods、Model Pruning Methods、Training Free Methods:这些文件夹分别包含了基于不同技术优化的 SAM 模型的代码和资源。
对项目进行扩展或者二次开发的方向
- 模型融合:可以将项目中不同优化技术的模型进行融合,以探索更高效、更适应特定场景的模型。
- 模型优化:基于现有的模型,可以进一步进行结构和参数优化,提高模型的性能和效率。
- 应用拓展:利用这些轻量级的 SAM 模型,可以开发面向移动设备、无人驾驶、远程监控等领域的图像分割应用。
- 交互式界面开发:开发一个用户友好的交互式界面,让用户可以方便地使用这些模型进行图像分割任务。
- 开源社区合作:鼓励更多研究者和技术人员参与到项目的开发和维护中来,共同推动图像分割技术的发展。
通过上述的扩展和二次开发,不仅可以丰富项目的功能,还能推动开源社区的共同进步。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137