tokenizer-go 使用教程
2024-09-14 02:22:09作者:房伟宁
1. 项目介绍
tokenizer-go 是一个用于简化 OpenAI API 用户进行令牌计算的 Go 包。尽管 OpenAI 没有提供原生的 Go 包来进行令牌计算,但 tokenizer-go 通过嵌入一个 npm 包的实现并通过 JavaScript 调用提取结果,使得用户可以像使用其他 Go 包一样在项目中使用它。这使得在 Go 编程语言中进行令牌计算变得更加容易。
2. 项目快速启动
安装
你可以通过以下命令将 tokenizer-go 作为模块安装:
go get -u github.com/pandodao/tokenizer-go
或者将其作为命令行程序安装:
go install github.com/pandodao/tokenizer-go/cmd/tokenizer@latest
使用示例
以下是一个简单的使用示例,展示了如何在 Go 代码中使用 tokenizer-go 进行令牌计算:
package main
import (
"fmt"
"github.com/pandodao/tokenizer-go"
)
func main() {
t := tokenizer.MustCalToken(`Many words map to one token, but some don't: indivisible. Unicode characters like emojis may be split into many tokens containing the underlying bytes: 🤚🏾. Sequences of characters commonly found next to each other may be grouped together: 1234567890`)
fmt.Println(t) // 输出: 64
encoded := tokenizer.MustEncode("Many words map to one token")
fmt.Printf("%+v\n", encoded) // 输出: Many words map to one token
decoded := tokenizer.MustDecode([]int{7085, 2456, 3975, 284, 530, 11241})
fmt.Println(decoded) // 输出: Many words map to one token
}
3. 应用案例和最佳实践
应用案例
tokenizer-go 可以用于以下场景:
- 文本处理:在处理文本数据时,计算文本的令牌数可以帮助你了解文本的长度,从而进行适当的截断或填充。
- API 调用:在使用 OpenAI API 时,计算输入文本的令牌数可以帮助你避免超出 API 的令牌限制。
最佳实践
- 并发处理:在处理大量文本时,可以使用并发来提高效率。
tokenizer-go支持并发调用,可以显著提高处理速度。 - 错误处理:尽管
MustCalToken、MustEncode和MustDecode提供了方便的调用方式,但在生产环境中,建议使用带有错误处理的函数版本,以确保程序的健壮性。
4. 典型生态项目
tokenizer-go 可以与其他 Go 语言的 NLP 项目结合使用,例如:
- go-nlp:一个用于自然语言处理的 Go 库,可以与
tokenizer-go结合使用来进行更复杂的文本分析。 - gorgonia:一个用于机器学习和深度学习的 Go 库,可以与
tokenizer-go结合使用来进行文本数据的预处理。
通过结合这些生态项目,你可以构建更强大的文本处理和分析工具。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19