tokenizer-go 使用教程
2024-09-14 10:58:12作者:房伟宁
1. 项目介绍
tokenizer-go 是一个用于简化 OpenAI API 用户进行令牌计算的 Go 包。尽管 OpenAI 没有提供原生的 Go 包来进行令牌计算,但 tokenizer-go 通过嵌入一个 npm 包的实现并通过 JavaScript 调用提取结果,使得用户可以像使用其他 Go 包一样在项目中使用它。这使得在 Go 编程语言中进行令牌计算变得更加容易。
2. 项目快速启动
安装
你可以通过以下命令将 tokenizer-go 作为模块安装:
go get -u github.com/pandodao/tokenizer-go
或者将其作为命令行程序安装:
go install github.com/pandodao/tokenizer-go/cmd/tokenizer@latest
使用示例
以下是一个简单的使用示例,展示了如何在 Go 代码中使用 tokenizer-go 进行令牌计算:
package main
import (
"fmt"
"github.com/pandodao/tokenizer-go"
)
func main() {
t := tokenizer.MustCalToken(`Many words map to one token, but some don't: indivisible. Unicode characters like emojis may be split into many tokens containing the underlying bytes: 🤚🏾. Sequences of characters commonly found next to each other may be grouped together: 1234567890`)
fmt.Println(t) // 输出: 64
encoded := tokenizer.MustEncode("Many words map to one token")
fmt.Printf("%+v\n", encoded) // 输出: Many words map to one token
decoded := tokenizer.MustDecode([]int{7085, 2456, 3975, 284, 530, 11241})
fmt.Println(decoded) // 输出: Many words map to one token
}
3. 应用案例和最佳实践
应用案例
tokenizer-go 可以用于以下场景:
- 文本处理:在处理文本数据时,计算文本的令牌数可以帮助你了解文本的长度,从而进行适当的截断或填充。
- API 调用:在使用 OpenAI API 时,计算输入文本的令牌数可以帮助你避免超出 API 的令牌限制。
最佳实践
- 并发处理:在处理大量文本时,可以使用并发来提高效率。
tokenizer-go支持并发调用,可以显著提高处理速度。 - 错误处理:尽管
MustCalToken、MustEncode和MustDecode提供了方便的调用方式,但在生产环境中,建议使用带有错误处理的函数版本,以确保程序的健壮性。
4. 典型生态项目
tokenizer-go 可以与其他 Go 语言的 NLP 项目结合使用,例如:
- go-nlp:一个用于自然语言处理的 Go 库,可以与
tokenizer-go结合使用来进行更复杂的文本分析。 - gorgonia:一个用于机器学习和深度学习的 Go 库,可以与
tokenizer-go结合使用来进行文本数据的预处理。
通过结合这些生态项目,你可以构建更强大的文本处理和分析工具。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135