LLaMA Tokenizer JS 使用教程
2024-09-16 01:55:28作者:翟江哲Frasier
1. 项目介绍
llama-tokenizer-js 是一个用于 LLaMA 1 和 LLaMA 2 模型的 JavaScript 分词器。它可以在浏览器端直接运行,无需依赖其他库。该项目的主要目的是在客户端准确计算 token 数量,适用于需要在前端进行 token 计数的应用场景。
主要特点
- 客户端运行:支持在浏览器中直接运行,无需服务器端支持。
- 高效分词:采用高效的 BPE(Byte-Pair Encoding)实现,运行速度快。
- 优化包大小:数据经过压缩和 base64 编码,包大小优化至 670KiB。
- 兼容性:兼容大多数 LLaMA 模型,包括 LLaMA 1 和 LLaMA 2。
2. 项目快速启动
安装
你可以通过 npm 安装 llama-tokenizer-js:
npm install llama-tokenizer-js
使用示例
以下是一个简单的使用示例,展示了如何在 JavaScript 中使用 llama-tokenizer-js 进行编码和解码。
import llamaTokenizer from 'llama-tokenizer-js';
// 编码
const encodedTokens = llamaTokenizer.encode("Hello world");
console.log(encodedTokens); // 输出: [1, 15043, 3186, 29991]
// 解码
const decodedText = llamaTokenizer.decode(encodedTokens);
console.log(decodedText); // 输出: 'Hello world'
在 HTML 中使用
你也可以通过 <script> 标签直接在 HTML 中使用:
<script type="module" src="https://belladoreai.github.io/llama-tokenizer-js/llama-tokenizer.js"></script>
<script>
const encodedTokens = llamaTokenizer.encode("Hello world");
console.log(encodedTokens); // 输出: [1, 15043, 3186, 29991]
</script>
3. 应用案例和最佳实践
应用案例
- 前端文本处理:在需要对用户输入的文本进行 token 计数的场景中,
llama-tokenizer-js可以直接在前端完成,无需后端支持。 - 聊天机器人:在构建基于 LLaMA 模型的聊天机器人时,可以使用
llama-tokenizer-js来计算用户输入的 token 数量,以确保输入在模型的上下文窗口内。
最佳实践
- 优化包大小:虽然
llama-tokenizer-js已经优化了包大小,但在生产环境中,建议使用 gzip 或 brotli 进一步压缩。 - 避免全局污染:在使用
llama-tokenizer-js时,确保只在需要的地方导入,避免全局命名空间污染。
4. 典型生态项目
相关项目
- transformers.js:一个用于在浏览器中运行 Transformer 模型的 JavaScript 库,集成了
llama-tokenizer-js作为 LLaMA 模型的分词器。 - oobabooga-text-webui:一个基于 Python 的文本处理 Web UI,提供了 token 计数的 API 接口,可以与
llama-tokenizer-js结合使用。
社区支持
- GitHub Issues:如果你在使用过程中遇到问题,可以在项目的 GitHub Issues 页面提交问题,社区会及时响应。
- Discussions:参与项目的 Discussions 讨论,与其他开发者交流使用心得和最佳实践。
通过以上内容,你应该能够快速上手并使用 llama-tokenizer-js 进行 token 计数和文本处理。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
288
2.59 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
225
304
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
605
180
暂无简介
Dart
575
127
Ascend Extension for PyTorch
Python
114
144
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
609
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
450
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
75
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
136
57