LLaMA Tokenizer JS 使用教程
2024-09-16 17:28:39作者:翟江哲Frasier
1. 项目介绍
llama-tokenizer-js 是一个用于 LLaMA 1 和 LLaMA 2 模型的 JavaScript 分词器。它可以在浏览器端直接运行,无需依赖其他库。该项目的主要目的是在客户端准确计算 token 数量,适用于需要在前端进行 token 计数的应用场景。
主要特点
- 客户端运行:支持在浏览器中直接运行,无需服务器端支持。
- 高效分词:采用高效的 BPE(Byte-Pair Encoding)实现,运行速度快。
- 优化包大小:数据经过压缩和 base64 编码,包大小优化至 670KiB。
- 兼容性:兼容大多数 LLaMA 模型,包括 LLaMA 1 和 LLaMA 2。
2. 项目快速启动
安装
你可以通过 npm 安装 llama-tokenizer-js:
npm install llama-tokenizer-js
使用示例
以下是一个简单的使用示例,展示了如何在 JavaScript 中使用 llama-tokenizer-js 进行编码和解码。
import llamaTokenizer from 'llama-tokenizer-js';
// 编码
const encodedTokens = llamaTokenizer.encode("Hello world");
console.log(encodedTokens); // 输出: [1, 15043, 3186, 29991]
// 解码
const decodedText = llamaTokenizer.decode(encodedTokens);
console.log(decodedText); // 输出: 'Hello world'
在 HTML 中使用
你也可以通过 <script> 标签直接在 HTML 中使用:
<script type="module" src="https://belladoreai.github.io/llama-tokenizer-js/llama-tokenizer.js"></script>
<script>
const encodedTokens = llamaTokenizer.encode("Hello world");
console.log(encodedTokens); // 输出: [1, 15043, 3186, 29991]
</script>
3. 应用案例和最佳实践
应用案例
- 前端文本处理:在需要对用户输入的文本进行 token 计数的场景中,
llama-tokenizer-js可以直接在前端完成,无需后端支持。 - 聊天机器人:在构建基于 LLaMA 模型的聊天机器人时,可以使用
llama-tokenizer-js来计算用户输入的 token 数量,以确保输入在模型的上下文窗口内。
最佳实践
- 优化包大小:虽然
llama-tokenizer-js已经优化了包大小,但在生产环境中,建议使用 gzip 或 brotli 进一步压缩。 - 避免全局污染:在使用
llama-tokenizer-js时,确保只在需要的地方导入,避免全局命名空间污染。
4. 典型生态项目
相关项目
- transformers.js:一个用于在浏览器中运行 Transformer 模型的 JavaScript 库,集成了
llama-tokenizer-js作为 LLaMA 模型的分词器。 - oobabooga-text-webui:一个基于 Python 的文本处理 Web UI,提供了 token 计数的 API 接口,可以与
llama-tokenizer-js结合使用。
社区支持
- GitHub Issues:如果你在使用过程中遇到问题,可以在项目的 GitHub Issues 页面提交问题,社区会及时响应。
- Discussions:参与项目的 Discussions 讨论,与其他开发者交流使用心得和最佳实践。
通过以上内容,你应该能够快速上手并使用 llama-tokenizer-js 进行 token 计数和文本处理。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
199
219
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.74 K