TensorFlow Lite Flutter Helper 项目教程
2024-09-15 13:38:20作者:平淮齐Percy
1. 项目介绍
TensorFlow Lite Flutter Helper 是一个开源项目,旨在将 TensorFlow Lite Support Library 和 TensorFlow Lite Support Task Library 引入 Flutter 平台。该项目帮助开发者快速开发和部署 TensorFlow Lite 模型到移动设备上,同时不牺牲性能。通过提供简单的架构来处理和操作 TFLite 模型的输入和输出,该项目简化了在 Flutter 应用中使用 TensorFlow Lite 的复杂性。
2. 项目快速启动
2.1 安装依赖
首先,在 pubspec.yaml 文件中添加 tflite_flutter_helper 依赖:
dependencies:
tflite_flutter_helper: ^0.3.1
然后运行 flutter pub get 来安装依赖。
2.2 初始化 TFLite 模型
以下是一个简单的示例,展示如何加载和运行一个 TensorFlow Lite 模型:
import 'package:tflite_flutter/tflite_flutter.dart';
import 'package:tflite_flutter_helper/tflite_flutter_helper.dart';
void main() async {
try {
// 从 assets 中加载模型
Interpreter interpreter = await Interpreter.fromAsset("mobilenet_v1_1.0_224_quant.tflite");
// 创建输入 TensorImage
TensorImage tensorImage = TensorImage.fromFile(imageFile);
// 创建 ImageProcessor 并添加必要的操作
ImageProcessor imageProcessor = ImageProcessorBuilder()
.add(ResizeOp(224, 224, ResizeMethod.NEAREST_NEIGHBOUR))
.build();
// 预处理图像
tensorImage = imageProcessor.process(tensorImage);
// 创建输出 TensorBuffer
TensorBuffer probabilityBuffer = TensorBuffer.createFixedSize(<int>[1, 1001], TfLiteType.uint8);
// 运行模型
interpreter.run(tensorImage.buffer, probabilityBuffer.buffer);
// 获取结果
List<double> probabilities = probabilityBuffer.getDoubleList();
print(probabilities);
} catch (e) {
print('Error loading model: $e');
}
}
3. 应用案例和最佳实践
3.1 图像分类
TensorFlow Lite Flutter Helper 提供了丰富的图像处理工具,使得图像分类任务变得简单。以下是一个图像分类的示例:
// 创建 ImageProcessor
ImageProcessor imageProcessor = ImageProcessorBuilder()
.add(ResizeOp(224, 224, ResizeMethod.NEAREST_NEIGHBOUR))
.build();
// 创建 TensorImage
TensorImage tensorImage = TensorImage.fromFile(imageFile);
// 预处理图像
tensorImage = imageProcessor.process(tensorImage);
// 创建输出 TensorBuffer
TensorBuffer probabilityBuffer = TensorBuffer.createFixedSize(<int>[1, 1001], TfLiteType.uint8);
// 运行模型
interpreter.run(tensorImage.buffer, probabilityBuffer.buffer);
// 获取结果
List<double> probabilities = probabilityBuffer.getDoubleList();
3.2 自然语言处理
TensorFlow Lite Flutter Helper 还支持自然语言处理任务,如文本分类和问答系统。以下是一个文本分类的示例:
// 创建 NLClassifier
final classifier = await NLClassifier.createFromAsset('assets/model.tflite');
// 分类文本
List<Category> predictions = classifier.classify("Hello, how are you?");
// 输出结果
print(predictions);
4. 典型生态项目
TensorFlow Lite Flutter Helper 是 TensorFlow Lite 生态系统的一部分,与其他 TensorFlow Lite 工具和库紧密集成。以下是一些典型的生态项目:
- TensorFlow Lite: 用于在移动和嵌入式设备上运行机器学习模型的轻量级解决方案。
- TensorFlow Lite Support Library: 提供了一系列工具和库,帮助开发者更轻松地处理和操作 TFLite 模型的输入和输出。
- TensorFlow Lite Task Library: 提供了预构建的任务 API,如图像分类、文本分类和问答系统,简化了模型集成过程。
通过这些工具和库的结合使用,开发者可以更高效地构建和部署机器学习应用。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669