TensorFlow Lite Flutter 插件使用教程
1. 项目介绍
TensorFlow Lite Flutter 插件提供了一个灵活且快速的解决方案,用于访问 TensorFlow Lite 解释器并执行推理。该插件的 API 设计与 TensorFlow Lite 的 Java 和 Swift API 类似,直接绑定到 TensorFlow Lite 的 C API,从而实现高效的推理(低延迟)。此外,它还支持通过 NNAPI、GPU 代理(在 Android 上)、Metal 和 CoreML 代理(在 iOS 上)以及 XNNPack 代理(在桌面平台上)进行加速。
主要特性
- 多平台支持:支持 Android、iOS、Windows、Mac 和 Linux。
- 灵活性:可以使用任何 TensorFlow Lite 模型。
- 加速支持:通过多线程和代理支持进行加速。
- 结构相似:API 结构与 TensorFlow Lite Java API 相似。
- 高性能:推理速度接近使用 Java API 构建的原生 Android 应用。
2. 项目快速启动
2.1 安装插件
首先,在 pubspec.yaml
文件中添加依赖:
dependencies:
tflite_flutter: ^0.9.0
然后运行 flutter pub get
来安装插件。
2.2 添加动态库
Android
在项目根目录下放置 install.sh
(Linux/Mac)或 install.bat
(Windows)脚本,并执行以下命令来自动下载并放置二进制文件到适当的文件夹:
sh install.sh
或
install.bat
iOS
下载 TensorFlowLiteC.framework
,并将其放置在插件的 pub-cache
文件夹中。
2.3 创建和使用解释器
import 'package:tflite_flutter/tflite_flutter.dart';
Future<void> loadModel() async {
final interpreter = await Interpreter.fromAsset('your_model.tflite');
// 定义输入和输出张量
var input = [
[1.23, 6.54, 7.81, 3.21, 2.22]
];
var output = List.filled(1 * 2, 0).reshape([1, 2]);
// 执行推理
interpreter.run(input, output);
// 打印输出
print(output);
// 关闭解释器
interpreter.close();
}
3. 应用案例和最佳实践
3.1 图像分类
使用 TensorFlow Lite 插件进行图像分类是一个常见的应用场景。以下是一个简单的示例:
Future<void> classifyImage(List<List<List<num>>> imageMatrix) async {
final interpreter = await Interpreter.fromAsset('mobilenet_v1_1.0_224.tflite');
// 定义输入和输出张量
var input = [imageMatrix];
var output = List.filled(1 * 1001, 0).reshape([1, 1001]);
// 执行推理
interpreter.run(input, output);
// 处理输出结果
final result = output.first;
print(result);
// 关闭解释器
interpreter.close();
}
3.2 对象检测
对象检测是另一个常见的应用场景,可以通过 TensorFlow Lite 插件轻松实现:
Future<void> detectObjects(List<List<List<num>>> imageMatrix) async {
final interpreter = await Interpreter.fromAsset('ssd_mobilenet_v1.tflite');
// 定义输入和输出张量
var input = [imageMatrix];
var output = List.filled(1 * 20, 0).reshape([1, 20]);
// 执行推理
interpreter.run(input, output);
// 处理输出结果
final result = output.first;
print(result);
// 关闭解释器
interpreter.close();
}
4. 典型生态项目
4.1 TensorFlow Lite 模型库
TensorFlow Lite 模型库提供了许多预训练的模型,可以直接用于各种应用场景,如图像分类、对象检测、语音识别等。
4.2 MediaPipe
MediaPipe 是一个用于构建多模态应用的框架,支持实时视频、音频和传感器数据的处理。TensorFlow Lite 插件可以与 MediaPipe 结合使用,以实现更复杂的机器学习任务。
4.3 Flutter 社区
Flutter 社区中有许多开发者在使用 TensorFlow Lite 插件构建各种应用,包括但不限于图像处理、自然语言处理和智能推荐系统。
通过这些生态项目,开发者可以更轻松地将 TensorFlow Lite 模型集成到 Flutter 应用中,实现高性能的机器学习功能。
- 鸿蒙开发工具大赶集本仓将收集和展示鸿蒙开发工具,欢迎大家踊跃投稿。通过pr附上您的工具介绍和使用指南,并加上工具对应的链接,通过的工具将会成功上架到我们社区。07
- LangChatLangChat: Java LLMs/AI Project, Supports Multi AI Providers( Gitee AI/ 智谱清言 / 阿里通义 / 百度千帆 / DeepSeek / 抖音豆包 / 零一万物 / 讯飞星火 / OpenAI / Gemini / Ollama / Azure / Claude 等大模型), Java生态下AI大模型产品解决方案,快速构建企业级AI知识库、AI机器人应用Java03
- 每日精选项目🔥🔥 01.24日推荐项目:微软21节课程,入门生成式AI🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~027
- source-vue🔥 一直想做一款追求极致用户体验的快速开发平台,看了很多优秀的开源项目但是发现没有合适的。于是利用空闲休息时间对若依框架进行扩展写了一套快速开发系统。如此有了开源字节快速开发平台。该平台基于 Spring Boot + MyBatis + Vue & Element ,包含微信小程序 & Uniapp, Web 报表、可视化大屏、三方登录、支付、短信、邮件、OSS...Java02
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie047
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython06
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区018
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0109