TensorFlow Lite Flutter 插件使用教程
1. 项目介绍
TensorFlow Lite Flutter 插件提供了一个灵活且快速的解决方案,用于访问 TensorFlow Lite 解释器并执行推理。该插件的 API 设计与 TensorFlow Lite 的 Java 和 Swift API 类似,直接绑定到 TensorFlow Lite 的 C API,从而实现高效的推理(低延迟)。此外,它还支持通过 NNAPI、GPU 代理(在 Android 上)、Metal 和 CoreML 代理(在 iOS 上)以及 XNNPack 代理(在桌面平台上)进行加速。
主要特性
- 多平台支持:支持 Android、iOS、Windows、Mac 和 Linux。
- 灵活性:可以使用任何 TensorFlow Lite 模型。
- 加速支持:通过多线程和代理支持进行加速。
- 结构相似:API 结构与 TensorFlow Lite Java API 相似。
- 高性能:推理速度接近使用 Java API 构建的原生 Android 应用。
2. 项目快速启动
2.1 安装插件
首先,在 pubspec.yaml
文件中添加依赖:
dependencies:
tflite_flutter: ^0.9.0
然后运行 flutter pub get
来安装插件。
2.2 添加动态库
Android
在项目根目录下放置 install.sh
(Linux/Mac)或 install.bat
(Windows)脚本,并执行以下命令来自动下载并放置二进制文件到适当的文件夹:
sh install.sh
或
install.bat
iOS
下载 TensorFlowLiteC.framework
,并将其放置在插件的 pub-cache
文件夹中。
2.3 创建和使用解释器
import 'package:tflite_flutter/tflite_flutter.dart';
Future<void> loadModel() async {
final interpreter = await Interpreter.fromAsset('your_model.tflite');
// 定义输入和输出张量
var input = [
[1.23, 6.54, 7.81, 3.21, 2.22]
];
var output = List.filled(1 * 2, 0).reshape([1, 2]);
// 执行推理
interpreter.run(input, output);
// 打印输出
print(output);
// 关闭解释器
interpreter.close();
}
3. 应用案例和最佳实践
3.1 图像分类
使用 TensorFlow Lite 插件进行图像分类是一个常见的应用场景。以下是一个简单的示例:
Future<void> classifyImage(List<List<List<num>>> imageMatrix) async {
final interpreter = await Interpreter.fromAsset('mobilenet_v1_1.0_224.tflite');
// 定义输入和输出张量
var input = [imageMatrix];
var output = List.filled(1 * 1001, 0).reshape([1, 1001]);
// 执行推理
interpreter.run(input, output);
// 处理输出结果
final result = output.first;
print(result);
// 关闭解释器
interpreter.close();
}
3.2 对象检测
对象检测是另一个常见的应用场景,可以通过 TensorFlow Lite 插件轻松实现:
Future<void> detectObjects(List<List<List<num>>> imageMatrix) async {
final interpreter = await Interpreter.fromAsset('ssd_mobilenet_v1.tflite');
// 定义输入和输出张量
var input = [imageMatrix];
var output = List.filled(1 * 20, 0).reshape([1, 20]);
// 执行推理
interpreter.run(input, output);
// 处理输出结果
final result = output.first;
print(result);
// 关闭解释器
interpreter.close();
}
4. 典型生态项目
4.1 TensorFlow Lite 模型库
TensorFlow Lite 模型库提供了许多预训练的模型,可以直接用于各种应用场景,如图像分类、对象检测、语音识别等。
4.2 MediaPipe
MediaPipe 是一个用于构建多模态应用的框架,支持实时视频、音频和传感器数据的处理。TensorFlow Lite 插件可以与 MediaPipe 结合使用,以实现更复杂的机器学习任务。
4.3 Flutter 社区
Flutter 社区中有许多开发者在使用 TensorFlow Lite 插件构建各种应用,包括但不限于图像处理、自然语言处理和智能推荐系统。
通过这些生态项目,开发者可以更轻松地将 TensorFlow Lite 模型集成到 Flutter 应用中,实现高性能的机器学习功能。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









