TensorFlow Lite 开源项目教程
2024-08-30 02:21:41作者:温玫谨Lighthearted
项目介绍
TensorFlow Lite 是一个帮助开发者将 TensorFlow 模型转换并在移动和边缘设备上优化的工具集。目前,TensorFlow Lite 已经在超过 40 亿台设备上运行。通过 TensorFlow 2.x,开发者可以使用 tf.Keras 轻松训练模型,将其转换为 tflite 格式并进行部署,或者从模型库中下载预训练的 TensorFlow Lite 模型。
项目快速启动
安装 TensorFlow Lite
首先,确保你的开发环境已经安装了 TensorFlow。你可以通过 pip 安装:
pip install tensorflow
转换模型
以下是一个简单的示例,展示如何将一个 Keras 模型转换为 TensorFlow Lite 模型:
import tensorflow as tf
# 创建一个简单的 Keras 模型
model = tf.keras.Sequential([
tf.keras.layers.Dense(units=1, input_shape=[1])
])
model.compile(optimizer='sgd', loss='mean_squared_error')
# 生成一些示例数据
xs = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float)
ys = np.array([-3.0, -1.0, 1.0, 3.0, 5.0, 7.0], dtype=float)
# 训练模型
model.fit(xs, ys, epochs=500)
# 转换为 TensorFlow Lite 模型
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
# 保存模型
with open('model.tflite', 'wb') as f:
f.write(tflite_model)
应用案例和最佳实践
案例一:图像分类
TensorFlow Lite 广泛应用于图像分类任务。你可以使用预训练的 MobileNet 模型进行图像分类:
import tensorflow as tf
# 加载预训练的 MobileNet 模型
interpreter = tf.lite.Interpreter(model_path="mobilenet_v1_1.0_224.tflite")
interpreter.allocate_tensors()
# 获取输入和输出张量
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# 进行预测
import numpy as np
from PIL import Image
img = Image.open("path_to_image.jpg").resize((224, 224))
img = np.expand_dims(img, axis=0)
img = img / 255.0
interpreter.set_tensor(input_details[0]['index'], img)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
print(output_data)
案例二:语音识别
TensorFlow Lite 也适用于语音识别任务。你可以使用预训练的语音识别模型进行实时语音识别:
import tensorflow as tf
import numpy as np
# 加载预训练的语音识别模型
interpreter = tf.lite.Interpreter(model_path="speech_recognition_model.tflite")
interpreter.allocate_tensors()
# 获取输入和输出张量
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# 进行预测
audio_data = np.array(..., dtype=np.float32)
interpreter.set_tensor(input_details[0]['index'], audio_data)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
print(output_data)
典型生态项目
TensorFlow Lite Model Maker
TensorFlow Lite Model Maker 是一个简化自定义模型训练和转换过程的库。它提供了高级 API,使得训练和部署自定义模型变得更加容易。
pip install tflite-model-maker
TensorFlow Lite Support Library
TensorFlow Lite Support Library 提供了额外的工具和实用程序,帮助开发者更轻松地在移动和边缘设备上部署和运行
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
135
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218