py-RFCN-priv项目中的Faster R-CNN端到端训练网络架构解析
2025-07-10 10:23:01作者:邵娇湘
网络架构概述
py-RFCN-priv项目中的VGG_CNN_M_1024模型是一个基于Faster R-CNN框架的目标检测网络,采用端到端(end-to-end)的训练方式。该网络结构主要包含以下几个核心组件:
- 基础特征提取网络(VGG_CNN_M_1024)
- 区域建议网络(Region Proposal Network, RPN)
- ROI池化层(ROI Pooling)
- 分类和回归网络
基础特征提取网络
网络的基础特征提取部分采用VGG_CNN_M_1024结构,包含5个卷积层和2个全连接层:
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 0 # 不更新权重
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 7
stride: 2
}
}
- 第一层卷积使用7×7的大核,步长为2,快速下采样
- 每层卷积后接ReLU激活函数和局部响应归一化(LRN)
- 使用最大池化层逐步减小特征图尺寸
区域建议网络(RPN)
RPN是Faster R-CNN的核心创新,用于生成候选区域:
layer {
name: "rpn_conv/3x3"
type: "Convolution"
bottom: "conv5"
top: "rpn/output"
convolution_param {
num_output: 256
kernel_size: 3 pad: 1 stride: 1
}
}
RPN包含以下关键组件:
- 3×3卷积层提取特征
- 分类分支(rpn_cls_score)预测每个锚点(anchor)的前景/背景概率
- 回归分支(rpn_bbox_pred)预测边界框偏移量
ROI处理流程
- ROI生成:通过ProposalLayer将RPN输出转换为候选区域
- ROI池化:将不同大小的候选区域统一为固定大小(6×6)
layer {
name: "roi_pool5"
type: "ROIPooling"
bottom: "conv5"
bottom: "rois"
top: "pool5"
roi_pooling_param {
pooled_w: 6
pooled_h: 6
spatial_scale: 0.0625 # 1/16
}
}
分类与回归网络
ROI池化后的特征通过两个全连接层(fc6, fc7)进一步处理:
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
inner_product_param {
num_output: 4096
}
}
最后分为两个分支:
- 分类分支(cls_score):输出81类概率(COCO数据集)
- 回归分支(bbox_pred):输出324维向量(81类×4个坐标值)
损失函数设计
网络采用多任务损失函数:
- RPN分类损失(SoftmaxWithLoss)
- RPN回归损失(SmoothL1Loss)
- 最终分类损失(SoftmaxWithLoss)
- 最终回归损失(SmoothL1Loss)
layer {
name: "loss_cls"
type: "SoftmaxWithLoss"
bottom: "cls_score"
bottom: "labels"
top: "loss_cls"
loss_weight: 1
}
训练技巧
- 学习率策略:通过lr_mult参数控制不同层的学习率
- 权重初始化:使用高斯分布初始化卷积和全连接层权重
- 数据增强:通过RoIDataLayer实现训练时的数据增强
- 难例挖掘:在损失计算时自动关注困难样本
总结
py-RFCN-priv中的这个Faster R-CNN实现展示了端到端目标检测网络的典型架构,通过共享卷积特征和联合训练RPN与检测网络,实现了高效且准确的目标检测。网络设计考虑了计算效率和检测精度的平衡,适合在中等规模的数据集(如COCO)上进行目标检测任务。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C032
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
340
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
233
266
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
668
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
45
32