py-RFCN-priv项目中的Faster R-CNN端到端训练网络架构解析
2025-07-10 02:04:06作者:邵娇湘
网络架构概述
py-RFCN-priv项目中的VGG_CNN_M_1024模型是一个基于Faster R-CNN框架的目标检测网络,采用端到端(end-to-end)的训练方式。该网络结构主要包含以下几个核心组件:
- 基础特征提取网络(VGG_CNN_M_1024)
- 区域建议网络(Region Proposal Network, RPN)
- ROI池化层(ROI Pooling)
- 分类和回归网络
基础特征提取网络
网络的基础特征提取部分采用VGG_CNN_M_1024结构,包含5个卷积层和2个全连接层:
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 0 # 不更新权重
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 7
stride: 2
}
}
- 第一层卷积使用7×7的大核,步长为2,快速下采样
- 每层卷积后接ReLU激活函数和局部响应归一化(LRN)
- 使用最大池化层逐步减小特征图尺寸
区域建议网络(RPN)
RPN是Faster R-CNN的核心创新,用于生成候选区域:
layer {
name: "rpn_conv/3x3"
type: "Convolution"
bottom: "conv5"
top: "rpn/output"
convolution_param {
num_output: 256
kernel_size: 3 pad: 1 stride: 1
}
}
RPN包含以下关键组件:
- 3×3卷积层提取特征
- 分类分支(rpn_cls_score)预测每个锚点(anchor)的前景/背景概率
- 回归分支(rpn_bbox_pred)预测边界框偏移量
ROI处理流程
- ROI生成:通过ProposalLayer将RPN输出转换为候选区域
- ROI池化:将不同大小的候选区域统一为固定大小(6×6)
layer {
name: "roi_pool5"
type: "ROIPooling"
bottom: "conv5"
bottom: "rois"
top: "pool5"
roi_pooling_param {
pooled_w: 6
pooled_h: 6
spatial_scale: 0.0625 # 1/16
}
}
分类与回归网络
ROI池化后的特征通过两个全连接层(fc6, fc7)进一步处理:
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
inner_product_param {
num_output: 4096
}
}
最后分为两个分支:
- 分类分支(cls_score):输出81类概率(COCO数据集)
- 回归分支(bbox_pred):输出324维向量(81类×4个坐标值)
损失函数设计
网络采用多任务损失函数:
- RPN分类损失(SoftmaxWithLoss)
- RPN回归损失(SmoothL1Loss)
- 最终分类损失(SoftmaxWithLoss)
- 最终回归损失(SmoothL1Loss)
layer {
name: "loss_cls"
type: "SoftmaxWithLoss"
bottom: "cls_score"
bottom: "labels"
top: "loss_cls"
loss_weight: 1
}
训练技巧
- 学习率策略:通过lr_mult参数控制不同层的学习率
- 权重初始化:使用高斯分布初始化卷积和全连接层权重
- 数据增强:通过RoIDataLayer实现训练时的数据增强
- 难例挖掘:在损失计算时自动关注困难样本
总结
py-RFCN-priv中的这个Faster R-CNN实现展示了端到端目标检测网络的典型架构,通过共享卷积特征和联合训练RPN与检测网络,实现了高效且准确的目标检测。网络设计考虑了计算效率和检测精度的平衡,适合在中等规模的数据集(如COCO)上进行目标检测任务。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0134AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.31 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
78

React Native鸿蒙化仓库
JavaScript
216
290

暂无简介
Dart
532
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
992
587

Ascend Extension for PyTorch
Python
74
103

仓颉编程语言测试用例。
Cangjie
34
61

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401