py-RFCN-priv项目中的Faster R-CNN端到端训练网络架构解析
2025-07-10 11:29:44作者:邵娇湘
网络架构概述
py-RFCN-priv项目中的VGG_CNN_M_1024模型是一个基于Faster R-CNN框架的目标检测网络,采用端到端(end-to-end)的训练方式。该网络结构主要包含以下几个核心组件:
- 基础特征提取网络(VGG_CNN_M_1024)
- 区域建议网络(Region Proposal Network, RPN)
- ROI池化层(ROI Pooling)
- 分类和回归网络
基础特征提取网络
网络的基础特征提取部分采用VGG_CNN_M_1024结构,包含5个卷积层和2个全连接层:
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 0 # 不更新权重
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 7
stride: 2
}
}
- 第一层卷积使用7×7的大核,步长为2,快速下采样
- 每层卷积后接ReLU激活函数和局部响应归一化(LRN)
- 使用最大池化层逐步减小特征图尺寸
区域建议网络(RPN)
RPN是Faster R-CNN的核心创新,用于生成候选区域:
layer {
name: "rpn_conv/3x3"
type: "Convolution"
bottom: "conv5"
top: "rpn/output"
convolution_param {
num_output: 256
kernel_size: 3 pad: 1 stride: 1
}
}
RPN包含以下关键组件:
- 3×3卷积层提取特征
- 分类分支(rpn_cls_score)预测每个锚点(anchor)的前景/背景概率
- 回归分支(rpn_bbox_pred)预测边界框偏移量
ROI处理流程
- ROI生成:通过ProposalLayer将RPN输出转换为候选区域
- ROI池化:将不同大小的候选区域统一为固定大小(6×6)
layer {
name: "roi_pool5"
type: "ROIPooling"
bottom: "conv5"
bottom: "rois"
top: "pool5"
roi_pooling_param {
pooled_w: 6
pooled_h: 6
spatial_scale: 0.0625 # 1/16
}
}
分类与回归网络
ROI池化后的特征通过两个全连接层(fc6, fc7)进一步处理:
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
inner_product_param {
num_output: 4096
}
}
最后分为两个分支:
- 分类分支(cls_score):输出81类概率(COCO数据集)
- 回归分支(bbox_pred):输出324维向量(81类×4个坐标值)
损失函数设计
网络采用多任务损失函数:
- RPN分类损失(SoftmaxWithLoss)
- RPN回归损失(SmoothL1Loss)
- 最终分类损失(SoftmaxWithLoss)
- 最终回归损失(SmoothL1Loss)
layer {
name: "loss_cls"
type: "SoftmaxWithLoss"
bottom: "cls_score"
bottom: "labels"
top: "loss_cls"
loss_weight: 1
}
训练技巧
- 学习率策略:通过lr_mult参数控制不同层的学习率
- 权重初始化:使用高斯分布初始化卷积和全连接层权重
- 数据增强:通过RoIDataLayer实现训练时的数据增强
- 难例挖掘:在损失计算时自动关注困难样本
总结
py-RFCN-priv中的这个Faster R-CNN实现展示了端到端目标检测网络的典型架构,通过共享卷积特征和联合训练RPN与检测网络,实现了高效且准确的目标检测。网络设计考虑了计算效率和检测精度的平衡,适合在中等规模的数据集(如COCO)上进行目标检测任务。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~043CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5