py-RFCN-priv项目中的Faster R-CNN端到端训练网络解析
2025-07-10 15:37:15作者:丁柯新Fawn
网络架构概述
py-RFCN-priv项目中的VGG_CNN_M_1024模型是一个基于Faster R-CNN框架的目标检测网络,专门针对PASCAL VOC数据集(21类)进行了优化。该网络采用端到端的训练方式,将区域建议网络(RPN)和分类网络整合在一个统一的框架中。
网络结构详解
1. 输入数据层
网络首先定义了一个Python层作为数据输入层:
layer {
name: 'input-data'
type: 'Python'
top: 'data'
top: 'im_info'
top: 'gt_boxes'
python_param {
module: 'roi_data_layer.layer'
layer: 'RoIDataLayer'
param_str: "'num_classes': 21"
}
}
这一层负责加载图像数据(data)、图像信息(im_info)和真实标注框(gt_boxes),其中num_classes参数设置为21对应PASCAL VOC的20个物体类别加1个背景类。
2. 基础卷积网络(Backbone)
网络采用VGG_CNN_M_1024作为基础特征提取网络,包含5个卷积层:
- conv1层:96个7×7卷积核,步长2,输出特征图尺寸减半
- conv2层:256个5×5卷积核,步长2,再次下采样
- conv3-conv5层:512个3×3卷积核,保持特征图尺寸不变
每层卷积后都跟随ReLU激活函数,前两层还使用了局部响应归一化(LRN)和最大池化层来增强特征表达能力。
3. 区域建议网络(RPN)
RPN是Faster R-CNN的核心创新,它直接在卷积特征图上生成候选区域:
layer {
name: "rpn_conv/3x3"
type: "Convolution"
bottom: "conv5"
top: "rpn/output"
convolution_param {
num_output: 256
kernel_size: 3 pad: 1 stride: 1
}
}
RPN首先使用3×3卷积生成256维特征,然后通过两个1×1卷积分别输出:
- 分类分数(rpn_cls_score):18个输出(2×9,表示9个锚点每个的前景/背景得分)
- 边界框回归(rpn_bbox_pred):36个输出(4×9,表示9个锚点每个的坐标偏移)
RPN训练时使用两种损失函数:
- 分类损失:SoftmaxWithLoss,区分前景/背景
- 回归损失:SmoothL1Loss,优化边界框位置
4. 候选区域生成与处理
RPN生成的候选区域经过以下处理:
- 通过ProposalLayer生成ROI(感兴趣区域)
- 通过ProposalTargetLayer为每个ROI分配标签和回归目标
layer {
name: 'roi-data'
type: 'Python'
bottom: 'rpn_rois'
bottom: 'gt_boxes'
top: 'rois'
top: 'labels'
top: 'bbox_targets'
top: 'bbox_inside_weights'
top: 'bbox_outside_weights'
python_param {
module: 'rpn.proposal_target_layer'
layer: 'ProposalTargetLayer'
param_str: "'num_classes': 21"
}
}
5. ROI池化与分类网络
候选区域通过ROI池化层转换为固定尺寸(6×6)的特征图:
layer {
name: "roi_pool5"
type: "ROIPooling"
bottom: "conv5"
bottom: "rois"
top: "pool5"
roi_pooling_param {
pooled_w: 6
pooled_h: 6
spatial_scale: 0.0625 # 1/16
}
}
随后是两个全连接层(fc6, fc7)和Dropout层,最后输出:
- 分类分数(cls_score):21类得分
- 边界框回归(bbox_pred):84维(21类×4个坐标)
6. 损失函数
分类网络同样使用两种损失:
- 分类损失:SoftmaxWithLoss
- 回归损失:SmoothL1Loss
网络特点分析
- 端到端训练:RPN和分类网络共享卷积特征,可以联合优化
- 多任务损失:同时优化分类和定位精度
- 高效区域建议:RPN直接在特征图上生成建议,避免了传统方法(如Selective Search)的计算开销
- 锚点机制:使用9个不同尺度和长宽比的锚点,提高了对不同形状物体的适应性
训练技巧
- 学习率策略:不同层设置不同的学习率(lr_mult),通常卷积层学习率较低
- 权重初始化:使用高斯分布初始化,分类层std=0.01,回归层std=0.001
- Dropout:在全连接层后使用Dropout(ratio=0.5)防止过拟合
- 损失平衡:通过bbox_inside_weights和bbox_outside_weights调整回归损失的重要性
该网络结构体现了Faster R-CNN的核心思想,通过区域建议网络和分类网络的联合训练,实现了高效准确的目标检测。在PASCAL VOC数据集上,这种结构能够取得优异的检测性能。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
226
2.28 K

暂无简介
Dart
527
116

React Native鸿蒙化仓库
JavaScript
214
288

Ascend Extension for PyTorch
Python
69
101

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
102

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197