py-RFCN-priv项目中的Faster R-CNN端到端训练网络解析
2025-07-10 13:50:28作者:丁柯新Fawn
网络架构概述
py-RFCN-priv项目中的VGG_CNN_M_1024模型是一个基于Faster R-CNN框架的目标检测网络,专门针对PASCAL VOC数据集(21类)进行了优化。该网络采用端到端的训练方式,将区域建议网络(RPN)和分类网络整合在一个统一的框架中。
网络结构详解
1. 输入数据层
网络首先定义了一个Python层作为数据输入层:
layer {
name: 'input-data'
type: 'Python'
top: 'data'
top: 'im_info'
top: 'gt_boxes'
python_param {
module: 'roi_data_layer.layer'
layer: 'RoIDataLayer'
param_str: "'num_classes': 21"
}
}
这一层负责加载图像数据(data)、图像信息(im_info)和真实标注框(gt_boxes),其中num_classes参数设置为21对应PASCAL VOC的20个物体类别加1个背景类。
2. 基础卷积网络(Backbone)
网络采用VGG_CNN_M_1024作为基础特征提取网络,包含5个卷积层:
- conv1层:96个7×7卷积核,步长2,输出特征图尺寸减半
- conv2层:256个5×5卷积核,步长2,再次下采样
- conv3-conv5层:512个3×3卷积核,保持特征图尺寸不变
每层卷积后都跟随ReLU激活函数,前两层还使用了局部响应归一化(LRN)和最大池化层来增强特征表达能力。
3. 区域建议网络(RPN)
RPN是Faster R-CNN的核心创新,它直接在卷积特征图上生成候选区域:
layer {
name: "rpn_conv/3x3"
type: "Convolution"
bottom: "conv5"
top: "rpn/output"
convolution_param {
num_output: 256
kernel_size: 3 pad: 1 stride: 1
}
}
RPN首先使用3×3卷积生成256维特征,然后通过两个1×1卷积分别输出:
- 分类分数(rpn_cls_score):18个输出(2×9,表示9个锚点每个的前景/背景得分)
- 边界框回归(rpn_bbox_pred):36个输出(4×9,表示9个锚点每个的坐标偏移)
RPN训练时使用两种损失函数:
- 分类损失:SoftmaxWithLoss,区分前景/背景
- 回归损失:SmoothL1Loss,优化边界框位置
4. 候选区域生成与处理
RPN生成的候选区域经过以下处理:
- 通过ProposalLayer生成ROI(感兴趣区域)
- 通过ProposalTargetLayer为每个ROI分配标签和回归目标
layer {
name: 'roi-data'
type: 'Python'
bottom: 'rpn_rois'
bottom: 'gt_boxes'
top: 'rois'
top: 'labels'
top: 'bbox_targets'
top: 'bbox_inside_weights'
top: 'bbox_outside_weights'
python_param {
module: 'rpn.proposal_target_layer'
layer: 'ProposalTargetLayer'
param_str: "'num_classes': 21"
}
}
5. ROI池化与分类网络
候选区域通过ROI池化层转换为固定尺寸(6×6)的特征图:
layer {
name: "roi_pool5"
type: "ROIPooling"
bottom: "conv5"
bottom: "rois"
top: "pool5"
roi_pooling_param {
pooled_w: 6
pooled_h: 6
spatial_scale: 0.0625 # 1/16
}
}
随后是两个全连接层(fc6, fc7)和Dropout层,最后输出:
- 分类分数(cls_score):21类得分
- 边界框回归(bbox_pred):84维(21类×4个坐标)
6. 损失函数
分类网络同样使用两种损失:
- 分类损失:SoftmaxWithLoss
- 回归损失:SmoothL1Loss
网络特点分析
- 端到端训练:RPN和分类网络共享卷积特征,可以联合优化
- 多任务损失:同时优化分类和定位精度
- 高效区域建议:RPN直接在特征图上生成建议,避免了传统方法(如Selective Search)的计算开销
- 锚点机制:使用9个不同尺度和长宽比的锚点,提高了对不同形状物体的适应性
训练技巧
- 学习率策略:不同层设置不同的学习率(lr_mult),通常卷积层学习率较低
- 权重初始化:使用高斯分布初始化,分类层std=0.01,回归层std=0.001
- Dropout:在全连接层后使用Dropout(ratio=0.5)防止过拟合
- 损失平衡:通过bbox_inside_weights和bbox_outside_weights调整回归损失的重要性
该网络结构体现了Faster R-CNN的核心思想,通过区域建议网络和分类网络的联合训练,实现了高效准确的目标检测。在PASCAL VOC数据集上,这种结构能够取得优异的检测性能。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217