解决Olive项目中ONNX适配器转换后的形状错误问题
问题背景
在使用微软Olive项目进行大语言模型适配时,开发者可能会遇到一个典型的形状错误问题。具体表现为:在完成适配器转换后运行模型时,系统提示输入维度不匹配的错误,特别是在处理自注意力机制中的投影层权重时。
错误现象
当尝试加载并运行转换后的适配器时,系统会抛出如下错误信息:
Got invalid dimensions for input: model.layers.25.self_attn.v_proj.lora_B.weight
index: 1 Got: 4096 Expected: 1024
这个错误表明,在模型第25层的自注意力机制中,值投影层(V_proj)的LoRA适配器权重B的维度与预期不符。系统期望的是1024维,但实际得到的是4096维。
问题根源
经过分析,这个问题通常由以下两种情况引起:
-
模型路径混淆:在转换适配器时使用了与基础模型不匹配的模型路径,导致适配器权重与模型结构不兼容。
-
缓存污染:之前的转换过程可能留下了不完整的缓存文件,这些残留文件影响了后续的转换过程。
解决方案
要彻底解决这个问题,可以按照以下步骤操作:
-
清理工作目录:删除所有之前生成的模型文件和缓存文件夹,确保从一个干净的环境开始。
-
统一模型路径:确保在capture-onnx-graph、generate-adapter和convert-adapters三个步骤中使用完全一致的模型路径。
-
完整转换流程:
# 1. 捕获ONNX图 olive capture-onnx-graph -m meta-llama/Llama-2-7b-chat-hf \ --adapter_path wsvn53/Llama-2-7b-chat-lora-tricky_math \ -o models/Llama-2-7b-chat-LoRA \ --torch_dtype float32 \ --use_ort_genai # 2. 生成适配器 olive generate-adapter -m models/Llama-2-7b-chat-LoRA/model \ -o models/Llama-2-7b-chat-LoRA/adapted \ --log_level 1 # 3. 转换适配器 olive convert-adapters \ --adapter_path wsvn53/Llama-2-7b-chat-lora-tricky_math \ --output_path adapters/Llama-2-7b-chat-lora-tricky_math.onnx_adapter \ --dtype float32
技术要点
-
维度一致性检查:在转换适配器时,系统会验证LoRA权重矩阵的维度是否与基础模型的对应层匹配。特别是对于自注意力机制中的Q/K/V投影层,需要确保LoRA的A/B矩阵的维度正确。
-
缓存管理:Olive在转换过程中会生成中间缓存文件,这些文件如果损坏或不完整,可能导致后续步骤出现维度不匹配的问题。
-
路径规范:建议使用绝对路径或确保相对路径的一致性,避免因路径问题导致的模型加载错误。
最佳实践
-
每次开始新的转换前,清理工作目录中的旧文件和缓存。
-
使用版本控制工具跟踪模型和适配器的版本,确保一致性。
-
在转换完成后,先进行小规模测试验证适配器是否能正常工作。
-
对于大型模型转换,建议分阶段进行并记录每个阶段的输出日志。
通过遵循这些步骤和最佳实践,开发者可以有效地避免适配器转换后的形状维度错误问题,确保模型能够正确加载和运行。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~055CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0380- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









