Microsoft Olive项目:将Mistral-7B模型导出为带KV缓存的ONNX格式实践指南
2025-07-07 03:00:16作者:昌雅子Ethen
概述
在大型语言模型(LLM)的实际部署中,KV缓存(Key-Value Cache)技术对于提高推理效率至关重要。本文将详细介绍如何使用Microsoft Olive项目将Mistral-7B模型成功导出为包含KV缓存支持的ONNX格式,并分享在此过程中遇到的技术挑战和解决方案。
KV缓存的重要性
KV缓存是Transformer架构中用于优化自回归生成过程的关键技术。在生成文本时,模型需要重复计算之前所有token的Key和Value矩阵,KV缓存通过存储这些中间计算结果,避免了重复计算,可以显著提高推理速度并降低计算资源消耗。
技术挑战
在将Mistral-7B模型导出为ONNX格式时,启用KV缓存选项会遇到以下典型问题:
- 张量尺寸不匹配:在尝试拼接缓存和当前计算的新KV值时,经常出现"Expected size 32 but got size 8"这类错误
- 动态轴处理复杂:KV缓存需要正确处理序列长度和批处理大小的动态变化
- 模型架构适配:不同版本的Transformers库对KV缓存的实现方式可能有差异
解决方案
方法一:使用OptimumConversion替代OnnxConversion
原始方案中使用OnnxConversion会导致KV缓存导出失败,改用OptimumConversion可以解决这一问题:
- 修改Olive配置文件,将OnnxConversion替换为OptimumConversion
- 确保配置中正确设置了KV缓存相关参数
- 验证导出模型的输入输出包含past_key_values相关节点
方法二:使用Olive的auto-opt命令(推荐)
最新版本的Olive提供了更简便的优化流程:
-
安装必要依赖:
pip install olive-ai transformers autoawq optimum peft bitsandbytes accelerate scipy onnxruntime-genai-cuda -
使用auto-opt命令一键优化:
olive auto-opt \ --model_name_or_path mistralai/Mistral-7B-v0.1 \ --trust_remote_code \ --output_path optimized-model \ --device gpu \ --provider CUDAExecutionProvider \ --use_model_builder \ --precision float16
模型推理示例
导出后的模型可以使用ONNX Runtime的Generate API进行推理,该API已内置KV缓存管理功能:
import onnxruntime_genai as og
model = og.Model("optimized-model/model")
tokenizer = og.Tokenizer(model)
tokenizer_stream = tokenizer.create_stream()
params = og.GeneratorParams(model)
params.set_search_options(max_length=100)
params.input_ids = tokenizer.encode("<s>[INST] 你好吗? [/INST]")
generator = og.Generator(model, params)
while not generator.is_done():
generator.compute_logits()
generator.generate_next_token()
print(tokenizer_stream.decode(generator.get_next_tokens()[0]), end='', flush=True)
最佳实践建议
- 版本兼容性:确保Olive、Transformers和ONNX Runtime版本兼容
- 量化考虑:对于资源受限环境,可使用--precision int4进行4位量化
- 硬件适配:根据目标硬件选择合适的Execution Provider
- 错误排查:遇到导出失败时,先尝试简化模型配置,逐步添加复杂功能
结论
通过Microsoft Olive项目,开发者可以高效地将Mistral等大型语言模型转换为生产可用的ONNX格式,并充分利用KV缓存带来的性能优势。本文介绍的方法不仅适用于Mistral-7B,也可推广到其他类似架构的LLM模型转换工作中。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218