Microsoft Olive项目:将Mistral-7B模型导出为带KV缓存的ONNX格式实践指南
2025-07-07 07:49:23作者:昌雅子Ethen
概述
在大型语言模型(LLM)的实际部署中,KV缓存(Key-Value Cache)技术对于提高推理效率至关重要。本文将详细介绍如何使用Microsoft Olive项目将Mistral-7B模型成功导出为包含KV缓存支持的ONNX格式,并分享在此过程中遇到的技术挑战和解决方案。
KV缓存的重要性
KV缓存是Transformer架构中用于优化自回归生成过程的关键技术。在生成文本时,模型需要重复计算之前所有token的Key和Value矩阵,KV缓存通过存储这些中间计算结果,避免了重复计算,可以显著提高推理速度并降低计算资源消耗。
技术挑战
在将Mistral-7B模型导出为ONNX格式时,启用KV缓存选项会遇到以下典型问题:
- 张量尺寸不匹配:在尝试拼接缓存和当前计算的新KV值时,经常出现"Expected size 32 but got size 8"这类错误
- 动态轴处理复杂:KV缓存需要正确处理序列长度和批处理大小的动态变化
- 模型架构适配:不同版本的Transformers库对KV缓存的实现方式可能有差异
解决方案
方法一:使用OptimumConversion替代OnnxConversion
原始方案中使用OnnxConversion会导致KV缓存导出失败,改用OptimumConversion可以解决这一问题:
- 修改Olive配置文件,将OnnxConversion替换为OptimumConversion
- 确保配置中正确设置了KV缓存相关参数
- 验证导出模型的输入输出包含past_key_values相关节点
方法二:使用Olive的auto-opt命令(推荐)
最新版本的Olive提供了更简便的优化流程:
-
安装必要依赖:
pip install olive-ai transformers autoawq optimum peft bitsandbytes accelerate scipy onnxruntime-genai-cuda -
使用auto-opt命令一键优化:
olive auto-opt \ --model_name_or_path mistralai/Mistral-7B-v0.1 \ --trust_remote_code \ --output_path optimized-model \ --device gpu \ --provider CUDAExecutionProvider \ --use_model_builder \ --precision float16
模型推理示例
导出后的模型可以使用ONNX Runtime的Generate API进行推理,该API已内置KV缓存管理功能:
import onnxruntime_genai as og
model = og.Model("optimized-model/model")
tokenizer = og.Tokenizer(model)
tokenizer_stream = tokenizer.create_stream()
params = og.GeneratorParams(model)
params.set_search_options(max_length=100)
params.input_ids = tokenizer.encode("<s>[INST] 你好吗? [/INST]")
generator = og.Generator(model, params)
while not generator.is_done():
generator.compute_logits()
generator.generate_next_token()
print(tokenizer_stream.decode(generator.get_next_tokens()[0]), end='', flush=True)
最佳实践建议
- 版本兼容性:确保Olive、Transformers和ONNX Runtime版本兼容
- 量化考虑:对于资源受限环境,可使用--precision int4进行4位量化
- 硬件适配:根据目标硬件选择合适的Execution Provider
- 错误排查:遇到导出失败时,先尝试简化模型配置,逐步添加复杂功能
结论
通过Microsoft Olive项目,开发者可以高效地将Mistral等大型语言模型转换为生产可用的ONNX格式,并充分利用KV缓存带来的性能优势。本文介绍的方法不仅适用于Mistral-7B,也可推广到其他类似架构的LLM模型转换工作中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1