Audit.NET中JsonDocument序列化问题的解决方案
问题背景
在使用Audit.NET进行审计日志记录时,开发人员可能会遇到JsonDocument对象序列化不正确的问题。具体表现为当升级Audit.NET版本后,原本能够正常序列化的JsonDocument对象突然只能输出类似{"RootElement":{"ValueKind":1}}这样的简化信息,而不再包含完整的JSON数据内容。
问题根源分析
这个问题的根本原因在于Audit.NET内部使用了不同的JSON序列化器。从版本25.0.4升级到27.5.0后,Audit.NET默认使用System.Text.Json作为序列化器,而如果开发人员配置了Newtonsoft.Json适配器,就会导致两种JSON处理方式不兼容。
JsonDocument是System.Text.Json命名空间下的类型,当它被Newtonsoft.Json序列化时,无法正确识别其内部结构,只能输出简化信息。这种不匹配在审计日志记录中会导致关键参数信息丢失,严重影响日志的可读性和可用性。
解决方案
方案一:统一使用System.Text.Json
如果项目中没有特殊需求,最简单的解决方案是保持Audit.NET的默认配置,即使用System.Text.Json进行序列化:
Audit.Core.Configuration.Setup()
.UseFileLogProvider(f => f.Directory(@"C:\Logs"));
var jsonDocument = System.Text.Json.JsonDocument.Parse(jsonBody);
var auditScope = AuditScope.Create("Test", null);
auditScope.SetCustomField("Parameters", jsonDocument);
auditScope.Save();
这种方式能够正确处理JsonDocument对象,输出完整的JSON内容。
方案二:统一使用Newtonsoft.Json
如果项目中已经大量使用Newtonsoft.Json,或者有特殊需求必须使用Newtonsoft.Json,则应该使用JObject代替JsonDocument:
Audit.Core.Configuration.Setup()
.JsonNewtonsoftAdapter()
.UseFileLogProvider(f => f.Directory(@"C:\Logs"));
var jsonBody = "{\"Id\":1, \"Name\":\"Test\"}";
var jsonDocument = Newtonsoft.Json.Linq.JObject.Parse(jsonBody);
var auditScope = AuditScope.Create("Test", null);
auditScope.SetCustomField("Parameters", jsonDocument);
auditScope.Save();
这种方式确保了JSON处理方式的一致性,避免了序列化问题。
最佳实践建议
-
一致性原则:在整个项目中保持JSON处理方式的一致性,要么全部使用System.Text.Json,要么全部使用Newtonsoft.Json。
-
明确配置:在使用Audit.NET时,明确配置所需的JSON适配器,避免依赖默认行为。
-
版本升级检查:在升级Audit.NET版本时,特别注意JSON处理相关的变更,必要时进行适配性测试。
-
日志验证:实现自动化测试来验证审计日志的输出格式是否符合预期。
总结
Audit.NET作为强大的审计日志框架,提供了灵活的配置选项。开发人员在使用时需要注意JSON序列化器的选择,确保与项目中其他组件的JSON处理方式保持一致。通过正确配置JSON适配器,可以避免JsonDocument序列化问题,保证审计日志的完整性和可用性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00