Audit.NET中JsonDocument序列化问题的解决方案
问题背景
在使用Audit.NET进行审计日志记录时,开发人员可能会遇到JsonDocument对象序列化不正确的问题。具体表现为当升级Audit.NET版本后,原本能够正常序列化的JsonDocument对象突然只能输出类似{"RootElement":{"ValueKind":1}}这样的简化信息,而不再包含完整的JSON数据内容。
问题根源分析
这个问题的根本原因在于Audit.NET内部使用了不同的JSON序列化器。从版本25.0.4升级到27.5.0后,Audit.NET默认使用System.Text.Json作为序列化器,而如果开发人员配置了Newtonsoft.Json适配器,就会导致两种JSON处理方式不兼容。
JsonDocument是System.Text.Json命名空间下的类型,当它被Newtonsoft.Json序列化时,无法正确识别其内部结构,只能输出简化信息。这种不匹配在审计日志记录中会导致关键参数信息丢失,严重影响日志的可读性和可用性。
解决方案
方案一:统一使用System.Text.Json
如果项目中没有特殊需求,最简单的解决方案是保持Audit.NET的默认配置,即使用System.Text.Json进行序列化:
Audit.Core.Configuration.Setup()
.UseFileLogProvider(f => f.Directory(@"C:\Logs"));
var jsonDocument = System.Text.Json.JsonDocument.Parse(jsonBody);
var auditScope = AuditScope.Create("Test", null);
auditScope.SetCustomField("Parameters", jsonDocument);
auditScope.Save();
这种方式能够正确处理JsonDocument对象,输出完整的JSON内容。
方案二:统一使用Newtonsoft.Json
如果项目中已经大量使用Newtonsoft.Json,或者有特殊需求必须使用Newtonsoft.Json,则应该使用JObject代替JsonDocument:
Audit.Core.Configuration.Setup()
.JsonNewtonsoftAdapter()
.UseFileLogProvider(f => f.Directory(@"C:\Logs"));
var jsonBody = "{\"Id\":1, \"Name\":\"Test\"}";
var jsonDocument = Newtonsoft.Json.Linq.JObject.Parse(jsonBody);
var auditScope = AuditScope.Create("Test", null);
auditScope.SetCustomField("Parameters", jsonDocument);
auditScope.Save();
这种方式确保了JSON处理方式的一致性,避免了序列化问题。
最佳实践建议
-
一致性原则:在整个项目中保持JSON处理方式的一致性,要么全部使用System.Text.Json,要么全部使用Newtonsoft.Json。
-
明确配置:在使用Audit.NET时,明确配置所需的JSON适配器,避免依赖默认行为。
-
版本升级检查:在升级Audit.NET版本时,特别注意JSON处理相关的变更,必要时进行适配性测试。
-
日志验证:实现自动化测试来验证审计日志的输出格式是否符合预期。
总结
Audit.NET作为强大的审计日志框架,提供了灵活的配置选项。开发人员在使用时需要注意JSON序列化器的选择,确保与项目中其他组件的JSON处理方式保持一致。通过正确配置JSON适配器,可以避免JsonDocument序列化问题,保证审计日志的完整性和可用性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00