PerfMark 使用教程
2024-09-15 17:40:05作者:薛曦旖Francesca
1. 项目介绍
PerfMark 是一个低开销、手动插桩的 Java 跟踪库。用户可以在代码中添加跟踪函数调用,以查看每个部分花费的时间。PerfMark 的主要特点包括:
- 非常低的开销:启用时,跟踪函数调用大约增加 70ns。跟踪在无锁、无等待的线程本地缓冲区中完成,避免干扰对延迟敏感的代码。
- 动态启用:PerfMark 可以在运行时启用或禁用。禁用时,PerfMark 没有开销,利用 JIT 编译器移除跟踪。
- 线程间通信:现有的分析器难以表达哪个线程唤醒并执行另一个线程上的工作。PerfMark 允许用户明确表达这种关系,从而清晰地了解代码流程。
- 小库大小:PerfMark 跟踪 API 只有 7 KB 大小,依赖性最小,易于包含在其他项目中。
- Chrome 跟踪查看器集成:PerfMark 可以导出到 Chrome 跟踪事件格式,便于在 Web 浏览器中查看。
2. 项目快速启动
2.1 添加依赖
在 build.gradle 文件中添加以下依赖:
dependencies {
implementation 'io.perfmark:perfmark-api:0.27.0'
// 仅适用于应用程序,不适用于库
implementation 'io.perfmark:perfmark-traceviewer:0.27.0'
}
或者在 pom.xml 文件中添加以下依赖:
<dependency>
<groupId>io.perfmark</groupId>
<artifactId>perfmark-api</artifactId>
<version>0.27.0</version>
</dependency>
2.2 在代码中添加跟踪调用
在代码中添加 PerfMark 跟踪调用,例如:
Map<String, Header> parseHeaders(List<String> rawHeaders) {
try (TaskCloseable task = PerfMark.traceTask("Parse HTTP headers")) {
Map<String, String> headers = new HashMap<>();
for (String rawHeader : rawHeaders) {
Header header = parseHeader(rawHeader);
headers.put(header.name(), header);
}
return headers;
}
}
2.3 记录异步工作
PerfMark 还可以用于记录异步工作:
Future<Response> buildResponse() {
try (TaskCloseable task = PerfMark.traceTask("Build Response")) {
Link link = PerfMark.linkOut();
return executor.submit(() -> {
try (TaskCloseable task2 = PerfMark.traceTask("Async Response")) {
PerfMark.linkIn(link);
return new Response(/* ... */);
}
});
}
}
2.4 查看跟踪结果
在浏览器中查看跟踪结果,生成 HTML:
PerfMark.setEnabled(true);
PerfMark.event("My Task");
TraceEventViewer.writeTraceHtml();
3. 应用案例和最佳实践
3.1 gRPC 中的应用
PerfMark 最初是为 gRPC 设计的,用于跟踪 gRPC 调用的各个部分,帮助开发者了解每个部分的性能瓶颈。
3.2 Zuul 中的应用
PerfMark 也被用于 Zuul,帮助开发者跟踪网关的各个处理阶段,优化网关性能。
3.3 最佳实践
- 动态启用:在生产环境中,建议动态启用 PerfMark,以避免不必要的开销。
- 线程间通信:使用 PerfMark 的线程间通信功能,清晰地表达线程之间的依赖关系。
- Chrome 跟踪查看器:利用 Chrome 跟踪查看器,直观地查看跟踪结果,分析性能瓶颈。
4. 典型生态项目
4.1 gRPC
gRPC 是一个高性能、通用的开源 RPC 框架,PerfMark 被广泛用于 gRPC 的性能分析。
4.2 Zuul
Zuul 是一个基于 JVM 的路由和服务器端负载均衡器,PerfMark 帮助 Zuul 开发者优化网关性能。
4.3 Java 生态
PerfMark 支持 Java 6 及以上版本,适用于各种 Java 项目,帮助开发者进行性能分析和优化。
通过本教程,您应该能够快速上手 PerfMark,并在实际项目中应用它进行性能分析和优化。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355