首页
/ 探索多智能体强化学习:Off-Policy MARL算法库

探索多智能体强化学习:Off-Policy MARL算法库

2024-05-20 01:18:50作者:胡易黎Nicole

在这个数字化飞速发展的时代,人工智能和机器学习已成为推动科技进步的强大力量。今天,我们要介绍一个由Akash Velu和Chao Yu开发的开源项目——一个全面的Off-Policy Multi-Agent Reinforcement Learning(MARL)算法集合。这个项目旨在为研究者和开发者提供多智能体强化学习的实用工具,帮助他们轻松探索复杂环境中的协作与竞争策略。

项目简介

这个开源项目支持多种离政策(off-policy)多智能体强化学习算法,包括MADDPG(多智能体深度确定性策略梯度)、MATD3、QMIX(混合状态空间分解)和VDN(价值分解网络)。它还提供了对两种广泛使用的模拟环境的支持:StarCraftII(SMAC)多智能体粒子世界环境(MPEs)

项目技术分析

该库的核心代码位于offpolicy文件夹中,其中包含了算法特定的实现。对于每个方法,如MADDPG和MATD3,都有基于循环神经网络(RNN)和多层感知机(MLP)的版本。此外,还支持优先经验回放缓冲区(Prioritized Experience Replay, PER)。训练回滚和策略更新的代码位于runner文件夹内,并针对每个环境进行了优化。在scripts文件夹中,你可以找到执行默认超参数配置训练的脚本。

安装步骤

项目依赖于Python 3.6.1以及PyTorch 1.5.1+cu101版本。安装过程包括创建Conda环境、安装PyTorch以及其他必要的库。对于非GPU系统和其他CUDA版本,请参照PyTorch官方文档进行安装。

应用场景

这个项目非常适合那些在智能体交互问题上寻求解决方案的研究者,例如在分布式系统控制、机器人协作、游戏AI等领域。提供的SMAC环境可以用于模拟复杂的即时战略游戏,而MPEs则适用于基础的合作和竞争任务。

项目特点

  • 算法多样性:覆盖了MADDPG、MATD3、QMIX和VDN等多种流行算法,适合不同的应用场景。
  • 灵活性:支持RNN和MLP两种模型结构,可适应不同类型的智能体行为。
  • 环境丰富:提供两种广为人知的模拟环境,便于验证和比较不同算法的表现。
  • 易于使用:提供易于执行的训练脚本,并支持Tensorboard或Weights & Bias进行结果可视化。
  • 优厚社区支持:项目作者提供了详细的文档,并持续维护,确保用户能顺利开展工作。

如果你正在寻找一个强大的多智能体强化学习平台,或者想要深入研究多智能体协同和竞争策略,那么这个项目绝对值得尝试。立即加入,开启你的多智能体强化学习之旅吧!

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K
kernelkernel
deepin linux kernel
C
22
6
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
980
395
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
931
555
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
518
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0