XGBoost项目Python基础入门教程
2025-07-07 03:08:33作者:史锋燃Gardner
概述
本文将介绍如何使用Python接口进行XGBoost机器学习模型的基础操作。XGBoost是一个高效的梯度提升决策树库,广泛应用于各类机器学习竞赛和工业实践中。
环境准备
在开始之前,请确保已安装以下Python包:
- numpy
- scipy
- xgboost
- pickle (Python内置)
基础使用流程
1. 数据加载
XGBoost使用特殊的DMatrix数据结构来存储和处理数据:
import xgboost as xgb
# 从文本文件加载数据
dtrain = xgb.DMatrix('../data/agaricus.txt.train')
dtest = xgb.DMatrix('../data/agaricus.txt.test')
DMatrix支持多种数据格式,包括文本文件、二进制缓冲区等。
2. 参数设置
XGBoost通过字典形式设置参数:
param = {
'max_depth': 2, # 树的最大深度
'eta': 1, # 学习率
'silent': 1, # 静默模式
'objective': 'binary:logistic' # 目标函数:二分类逻辑回归
}
3. 模型训练与评估
训练时可以指定验证集监控性能:
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
num_round = 2 # 迭代次数
bst = xgb.train(param, dtrain, num_round, watchlist)
4. 预测与评估
训练完成后可以进行预测:
preds = bst.predict(dtest)
labels = dtest.get_label()
# 计算错误率
error = sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
print(f'error={error}')
模型持久化
1. 保存与加载模型
# 保存模型
bst.save_model('xgb.model')
# 加载模型
bst2 = xgb.Booster(model_file='xgb.model')
2. 使用pickle序列化
import pickle
# 序列化模型
pks = pickle.dumps(bst2)
# 反序列化
bst3 = pickle.loads(pks)
不同数据格式支持
XGBoost支持多种数据输入格式:
1. SciPy稀疏矩阵
import scipy.sparse
# 从CSR格式构建DMatrix
csr = scipy.sparse.csr_matrix((dat, (row, col)))
dtrain = xgb.DMatrix(csr, label=labels)
# 从CSC格式构建DMatrix
csc = scipy.sparse.csc_matrix((dat, (row, col)))
dtrain = xgb.DMatrix(csc, label=labels)
2. NumPy数组
import numpy as np
# 从密集NumPy数组构建DMatrix
npymat = csr.todense()
dtrain = xgb.DMatrix(npymat, label=labels)
模型解释性
XGBoost提供了模型解释工具:
# 导出模型结构
bst.dump_model('dump.raw.txt')
# 使用特征映射导出更易读的模型结构
bst.dump_model('dump.nice.txt', '../data/featmap.txt')
总结
本文介绍了XGBoost Python接口的基础使用方法,包括:
- 数据加载与DMatrix数据结构
- 参数设置与模型训练
- 预测与性能评估
- 模型持久化方法
- 不同数据格式的支持
- 模型解释工具
通过这些基础操作,您可以快速开始使用XGBoost进行机器学习任务。对于更高级的功能,如自定义目标函数、交叉验证等,可以参考XGBoost的官方文档进一步学习。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143