angr项目中的函数输入分析问题解析
2025-05-28 21:06:15作者:幸俭卉
问题背景
在逆向工程和二进制分析领域,angr是一个强大的符号执行框架,能够帮助研究人员分析二进制程序的行为。本文讨论了一个在使用angr分析函数输入时遇到的特殊情况:当尝试找出所有使函数返回真值的输入时,系统遗漏了部分有效输入。
问题函数分析
我们有一个简单的x86汇编函数,其逻辑结构如下:
- 比较输入参数与0xbaadf00d,如果相等则返回1
- 否则比较参数与0xcafeface,如果相等则返回1
- 最后比较参数与0xdeadbeef,如果相等则返回1,否则返回0
从逻辑上看,这个函数应该在输入为0xbaadf00d、0xcafeface或0xdeadbeef时返回真值。
使用angr分析的问题
当使用angr的callable功能直接分析这个函数时,出现了以下异常情况:
- 生成的抽象语法树(AST)结构异常复杂,包含了一些看似冗余的条件判断
- 最终只识别出了0xbaadf00d和0xcafeface两个有效输入,遗漏了0xdeadbeef
- 断言检查失败,验证了结果的不完整性
问题根源
经过深入分析,发现问题出在angr的callable功能实现上。callable在处理函数调用时,没有完全正确地跟踪所有执行路径,导致部分分支条件被错误地合并或忽略。具体表现为:
- 条件分支的路径探索不完整
- 生成的AST包含冗余条件,如
(arg_0_32 == 0xcafeface || !(arg_0_32 == 0xbaadf00d) && !(arg_0_32 == 0xcafeface))这样的表达式明显可以简化 - 最终约束条件过于严格,排除了有效的解
解决方案
通过改用更底层的符号执行方法,我们成功解决了这个问题。具体改进包括:
- 使用
project.factory.call_state创建初始状态 - 通过
simgr.explore显式探索执行路径 - 手动收集和验证各个路径上的约束条件
- 使用求解器枚举所有满足条件的输入
这种方法虽然代码量稍多,但能够更精确地控制符号执行过程,确保所有执行路径都被正确探索。
技术要点
-
符号执行与约束求解:angr的核心能力在于将程序执行转化为符号表达式,并通过约束求解器找到满足特定条件的输入。
-
路径探索策略:不同的分析方法会影响路径覆盖的完整性。直接使用callable可能隐藏了一些底层细节,而显式的路径探索则更加可控。
-
约束优化:复杂的约束条件可能导致求解效率下降或结果不完整。在实际应用中,适当的约束简化常常能提高分析的准确性。
最佳实践建议
- 对于简单函数,可以直接使用callable进行快速分析
- 当遇到复杂逻辑或结果不符合预期时,应改用更底层的符号执行方法
- 始终验证分析结果,确保没有遗漏重要路径
- 注意约束条件的简化,避免引入不必要的复杂性
通过这个案例,我们不仅解决了具体的技术问题,更重要的是理解了angr不同分析方法的适用场景和局限性,这对后续的二进制分析工作具有重要的指导意义。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137