FunAudioLLM/SenseVoice项目中的音频事件检测能力优化实践
2025-06-07 17:23:54作者:劳婵绚Shirley
背景介绍
FunAudioLLM/SenseVoice是一个开源的音频处理项目,其核心功能包括自动语音识别(ASR)和音频事件检测(AED)。在初始版本中,模型的AED能力表现较弱,主要原因是训练数据不足且未针对该任务进行专门优化。
问题分析
通过项目讨论发现,原始模型在训练时主要使用了ASR数据,仅包含少量负样本噪声数据,缺乏针对音频事件检测任务的专门训练。这导致模型在识别特定音频事件(如动物叫声、警报声等)时表现不佳。
解决方案
1. 利用预留Token扩展事件类型
SenseVoice模型在设计时已预留了未使用的Token(命名为SPECIAL_TOKEN_X),这为事件类型扩展提供了便利。通过调用tokenizer接口可以获取这些预留Token:
[tokenizer.ids2tokens(idx) for idx in range(tokenizer.get_vocab_size())]
建议使用SPECIAL_TOKEN_15之后的Token进行新事件类型的扩展,这样可以避免与现有Token产生冲突。
2. 数据准备与格式规范
使用ESC-50等公开音频事件数据集进行微调训练时,需要遵循特定数据格式:
- 语种字段设为"<|nospeech|>"
- 情感字段设为"<|EMO_UNKNOWN|>"
- 事件字段设为目标事件对应的Token
- 文本内容留空
- 目标长度(target_len)设为1
示例数据格式:
{
"key": "3-187549-A-6",
"text_language": "<|nospeech|>",
"emo_target": "<|EMO_UNKNOWN|>",
"event_target": "<|Event_UNK|>",
"with_or_wo_itn": "<|woitn|>",
"target": "",
"source": "path/to/audio.wav",
"target_len": 1,
"source_len": 500
}
3. 训练注意事项
在实践过程中需要注意:
- Token名称必须准确无误,大小写敏感
- 确保音频文件路径正确
- 合理设置source_len参数,反映音频实际长度
- 新增事件类型时建议从预留Token的较高编号开始使用
实践效果
通过在ESC-50数据集上扩展7个新的事件类型并进行微调训练,模型的音频事件检测能力得到了显著提升。验证集上的准确率明显提高,证明这种扩展方法的有效性。
技术启示
这一实践表明:
- 预训练模型预留扩展空间的重要性
- 合理利用公开数据集可以快速提升特定任务表现
- 模型微调时数据格式的规范性直接影响训练效果
- 系统设计时考虑可扩展性能够降低后续优化成本
对于希望增强音频事件检测能力的开发者,可以参考这一方法,结合自身业务需求,选择合适的数据集进行模型优化。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258