FunAudioLLM/SenseVoice项目中的音频事件检测能力优化实践
2025-06-07 08:21:17作者:劳婵绚Shirley
背景介绍
FunAudioLLM/SenseVoice是一个开源的音频处理项目,其核心功能包括自动语音识别(ASR)和音频事件检测(AED)。在初始版本中,模型的AED能力表现较弱,主要原因是训练数据不足且未针对该任务进行专门优化。
问题分析
通过项目讨论发现,原始模型在训练时主要使用了ASR数据,仅包含少量负样本噪声数据,缺乏针对音频事件检测任务的专门训练。这导致模型在识别特定音频事件(如动物叫声、警报声等)时表现不佳。
解决方案
1. 利用预留Token扩展事件类型
SenseVoice模型在设计时已预留了未使用的Token(命名为SPECIAL_TOKEN_X),这为事件类型扩展提供了便利。通过调用tokenizer接口可以获取这些预留Token:
[tokenizer.ids2tokens(idx) for idx in range(tokenizer.get_vocab_size())]
建议使用SPECIAL_TOKEN_15之后的Token进行新事件类型的扩展,这样可以避免与现有Token产生冲突。
2. 数据准备与格式规范
使用ESC-50等公开音频事件数据集进行微调训练时,需要遵循特定数据格式:
- 语种字段设为"<|nospeech|>"
- 情感字段设为"<|EMO_UNKNOWN|>"
- 事件字段设为目标事件对应的Token
- 文本内容留空
- 目标长度(target_len)设为1
示例数据格式:
{
"key": "3-187549-A-6",
"text_language": "<|nospeech|>",
"emo_target": "<|EMO_UNKNOWN|>",
"event_target": "<|Event_UNK|>",
"with_or_wo_itn": "<|woitn|>",
"target": "",
"source": "path/to/audio.wav",
"target_len": 1,
"source_len": 500
}
3. 训练注意事项
在实践过程中需要注意:
- Token名称必须准确无误,大小写敏感
- 确保音频文件路径正确
- 合理设置source_len参数,反映音频实际长度
- 新增事件类型时建议从预留Token的较高编号开始使用
实践效果
通过在ESC-50数据集上扩展7个新的事件类型并进行微调训练,模型的音频事件检测能力得到了显著提升。验证集上的准确率明显提高,证明这种扩展方法的有效性。
技术启示
这一实践表明:
- 预训练模型预留扩展空间的重要性
- 合理利用公开数据集可以快速提升特定任务表现
- 模型微调时数据格式的规范性直接影响训练效果
- 系统设计时考虑可扩展性能够降低后续优化成本
对于希望增强音频事件检测能力的开发者,可以参考这一方法,结合自身业务需求,选择合适的数据集进行模型优化。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 开源电子设计自动化利器:KiCad EDA全方位使用指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 Python案例资源下载 - 从入门到精通的完整项目代码合集 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
248
2.48 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
89
React Native鸿蒙化仓库
JavaScript
217
298
暂无简介
Dart
548
119
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
600
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
411
Ascend Extension for PyTorch
Python
88
118
仓颉编程语言运行时与标准库。
Cangjie
124
102
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
125