GCN人脸识别聚类项目指南
2024-09-26 21:19:37作者:董宙帆
本指南详细介绍了如何操作和理解基于图卷积网络(GCN)的脸部聚类开源项目,项目地址位于 GitHub,该库用于实现CVPR 2019论文《基于连接性的脸部聚类通过图卷积网络》中的方法。
1. 项目目录结构及介绍
项目遵循清晰的组织结构,下面是主要的目录及其功能简介:
.
├── assets # 资源文件夹,可能存放预处理后的数据或模型辅助文件
├── feeder.py # 数据供给器,负责准备输入给模型的数据
├── gitignore # 忽略文件列表,指定不应被Git版本控制的文件类型或名称
├── LICENSE # 许可证文件,表明项目遵循MIT协议
├── README.md # 项目说明文件,包含了基本的项目介绍和快速入门信息
├── requirements.txt # 环境依赖文件,列出运行项目所需的Python包及其版本
├── test.py # 测试脚本,用于验证模型在特定数据上的表现
├── train.py # 训练脚本,执行模型训练过程
└── utils # 工具函数集合,包括数据处理、模型辅助等功能
# 模型和核心代码部分
├── model.py # 定义图卷积网络模型
└── visulization.ipynb # 可视化脚本,帮助理解模型输出或数据特征
# 其他关键文件
├── *.py # 可能存在的其他Python脚本,如数据预处理或后处理脚本
└── *.npy # 预处理好的数据文件,如特征向量、标签等
2. 项目的启动文件介绍
训练模型
- train.py: 此脚本用于训练模型。它需要提供特征路径(
--feat_path),近邻图路径(--knn_graph_path)以及标签路径(--labels_path)。这一步是构建模型并调整其权重,以学习从特征到身份链接的关系。
测试模型
- test.py: 这个脚本用于评估已经训练好的模型。你需要提供验证集特征路径(
--val_feat_path),近邻图路径(--val_knn_graph_path),如果需要计算精确度,则还需要提供验证集的标签路径(--val_labels_path)以及模型权重的路径(--checkpoint)。测试过程中,它会动态输出成对精度、召回率和最终的B-Cubed F-score、NMI分数。
3. 项目的配置文件介绍
本项目没有明确的单个“配置文件”作为单独的文件存在,而是通过命令行参数来指定配置。这意味着你需在运行train.py或test.py时,通过命令行直接传递必要的配置信息,例如数据路径、模型权重路径等。尽管如此,你可以创建一个自定义的.py脚本或使用环境变量来管理这些配置项,以便于维护和复现实验设置。
为了更灵活和可扩展的配置管理,可以考虑以下伪配置文件概念:
# 假设的config.py示例
class Config:
FEATURE_PATH = "path/to/features"
LABELS_PATH = "path/to/labels"
KNNGRAPHS_PATH = "path/to/knn_graphs"
CHECKPOINT_PATH = "path/to/model_weights"
# 使用时导入并在命令行调用中参考这些变量
然后在实际调用脚本时,可以从这个虚拟配置中读取路径,简化命令行参数的指定。这种方式虽然不是项目原始结构的一部分,但提供了一种组织配置信息的实用方案。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120