Ordinals项目中的Runes交易输出冗余问题分析
在区块链生态的Ordinals协议实现中,Runes代币系统的交易构造机制存在一个值得关注的技术问题。本文将从技术原理层面深入分析该问题的表现、成因及潜在解决方案。
问题现象
当用户使用Ordinals客户端发送Runes交易时,系统会固定生成三个输出:
- OP_RETURN脚本输出(用于携带Runes分配信息)
- 找零输出(用于退回剩余Runes)
- 目标地址输出(实际转账的Runes)
但在全额转账场景下(即发送方将其持有的特定Runes全部转出时),系统仍会生成不必要的找零输出,导致交易体积增大和手续费浪费。
技术原理剖析
Runes协议的交易构造遵循以下核心机制:
-
Edicts编码规则:通过OP_RETURN中的特定数据结构声明Runes的分配方案,其中包含区块高度、交易索引、分配数量和目标输出索引等关键信息。
-
默认分配规则:当交易不包含任何Edicts声明时,协议默认将所有输入Runes分配给第一个输出。这一特性本可用于优化全额转账场景。
-
当前实现逻辑:Ordinals客户端在构造交易时采用固定模式,未考虑全额转账这一边界情况,始终生成三个标准输出。
问题影响
-
交易效率:多余的输出使交易体积增加约34字节(一个标准P2WPKH输出的大小),导致手续费成本上升。
-
UTXO集膨胀:产生大量零余额的找零UTXO,影响节点资源利用率。
-
用户体验:用户需要为不必要的输出支付额外手续费,在批量操作时影响显著。
优化方案建议
基于协议特性,可实施以下改进:
-
场景检测机制:在交易构造阶段识别全额转账场景,当满足以下条件时跳过找零输出生成:
- 输入Runes总额等于转账金额
- 不涉及多Runes类型混合操作
-
输出简化策略:在全额转账时采用最小化输出方案:
- 仅保留目标地址输出
- 省略OP_RETURN(利用默认分配规则)
- 完全移除找零输出
-
手续费优化:精简后的交易体积可减少约90字节(OP_RETURN+找零输出),显著降低手续费成本。
实现考量
开发团队需注意以下技术细节:
-
边界条件处理:需严格验证输入Runes的完整性,防止因浮点运算误差导致误判。
-
协议兼容性:简化后的交易仍需符合Runes协议规范,确保所有客户端都能正确解析。
-
错误恢复机制:当简化交易因某种原因失败时,应自动回退到标准构造模式。
该优化方案已得到社区开发者的初步认可,预计将在后续版本中实现。对于Ordinals协议的长期发展而言,这类精细化优化有助于提升协议效率并降低用户使用门槛。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









