Ordinals项目中的Runes交易输出冗余问题分析
在区块链生态的Ordinals协议实现中,Runes代币系统的交易构造机制存在一个值得关注的技术问题。本文将从技术原理层面深入分析该问题的表现、成因及潜在解决方案。
问题现象
当用户使用Ordinals客户端发送Runes交易时,系统会固定生成三个输出:
- OP_RETURN脚本输出(用于携带Runes分配信息)
- 找零输出(用于退回剩余Runes)
- 目标地址输出(实际转账的Runes)
但在全额转账场景下(即发送方将其持有的特定Runes全部转出时),系统仍会生成不必要的找零输出,导致交易体积增大和手续费浪费。
技术原理剖析
Runes协议的交易构造遵循以下核心机制:
-
Edicts编码规则:通过OP_RETURN中的特定数据结构声明Runes的分配方案,其中包含区块高度、交易索引、分配数量和目标输出索引等关键信息。
-
默认分配规则:当交易不包含任何Edicts声明时,协议默认将所有输入Runes分配给第一个输出。这一特性本可用于优化全额转账场景。
-
当前实现逻辑:Ordinals客户端在构造交易时采用固定模式,未考虑全额转账这一边界情况,始终生成三个标准输出。
问题影响
-
交易效率:多余的输出使交易体积增加约34字节(一个标准P2WPKH输出的大小),导致手续费成本上升。
-
UTXO集膨胀:产生大量零余额的找零UTXO,影响节点资源利用率。
-
用户体验:用户需要为不必要的输出支付额外手续费,在批量操作时影响显著。
优化方案建议
基于协议特性,可实施以下改进:
-
场景检测机制:在交易构造阶段识别全额转账场景,当满足以下条件时跳过找零输出生成:
- 输入Runes总额等于转账金额
- 不涉及多Runes类型混合操作
-
输出简化策略:在全额转账时采用最小化输出方案:
- 仅保留目标地址输出
- 省略OP_RETURN(利用默认分配规则)
- 完全移除找零输出
-
手续费优化:精简后的交易体积可减少约90字节(OP_RETURN+找零输出),显著降低手续费成本。
实现考量
开发团队需注意以下技术细节:
-
边界条件处理:需严格验证输入Runes的完整性,防止因浮点运算误差导致误判。
-
协议兼容性:简化后的交易仍需符合Runes协议规范,确保所有客户端都能正确解析。
-
错误恢复机制:当简化交易因某种原因失败时,应自动回退到标准构造模式。
该优化方案已得到社区开发者的初步认可,预计将在后续版本中实现。对于Ordinals协议的长期发展而言,这类精细化优化有助于提升协议效率并降低用户使用门槛。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0382- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









