Ordinals项目中的Runes交易输出冗余问题分析
在区块链生态的Ordinals协议实现中,Runes代币系统的交易构造机制存在一个值得关注的技术问题。本文将从技术原理层面深入分析该问题的表现、成因及潜在解决方案。
问题现象
当用户使用Ordinals客户端发送Runes交易时,系统会固定生成三个输出:
- OP_RETURN脚本输出(用于携带Runes分配信息)
- 找零输出(用于退回剩余Runes)
- 目标地址输出(实际转账的Runes)
但在全额转账场景下(即发送方将其持有的特定Runes全部转出时),系统仍会生成不必要的找零输出,导致交易体积增大和手续费浪费。
技术原理剖析
Runes协议的交易构造遵循以下核心机制:
-
Edicts编码规则:通过OP_RETURN中的特定数据结构声明Runes的分配方案,其中包含区块高度、交易索引、分配数量和目标输出索引等关键信息。
-
默认分配规则:当交易不包含任何Edicts声明时,协议默认将所有输入Runes分配给第一个输出。这一特性本可用于优化全额转账场景。
-
当前实现逻辑:Ordinals客户端在构造交易时采用固定模式,未考虑全额转账这一边界情况,始终生成三个标准输出。
问题影响
-
交易效率:多余的输出使交易体积增加约34字节(一个标准P2WPKH输出的大小),导致手续费成本上升。
-
UTXO集膨胀:产生大量零余额的找零UTXO,影响节点资源利用率。
-
用户体验:用户需要为不必要的输出支付额外手续费,在批量操作时影响显著。
优化方案建议
基于协议特性,可实施以下改进:
-
场景检测机制:在交易构造阶段识别全额转账场景,当满足以下条件时跳过找零输出生成:
- 输入Runes总额等于转账金额
- 不涉及多Runes类型混合操作
-
输出简化策略:在全额转账时采用最小化输出方案:
- 仅保留目标地址输出
- 省略OP_RETURN(利用默认分配规则)
- 完全移除找零输出
-
手续费优化:精简后的交易体积可减少约90字节(OP_RETURN+找零输出),显著降低手续费成本。
实现考量
开发团队需注意以下技术细节:
-
边界条件处理:需严格验证输入Runes的完整性,防止因浮点运算误差导致误判。
-
协议兼容性:简化后的交易仍需符合Runes协议规范,确保所有客户端都能正确解析。
-
错误恢复机制:当简化交易因某种原因失败时,应自动回退到标准构造模式。
该优化方案已得到社区开发者的初步认可,预计将在后续版本中实现。对于Ordinals协议的长期发展而言,这类精细化优化有助于提升协议效率并降低用户使用门槛。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00