AWS Deep Learning Containers发布PyTorch 2.4.0 GPU推理镜像支持Graviton处理器
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,它集成了主流深度学习框架、工具和库,使开发者能够快速部署深度学习工作负载。这些容器镜像经过优化,可直接在Amazon EC2、Amazon ECS和Amazon EKS等服务上运行。
近日,AWS发布了针对Graviton处理器的PyTorch 2.4.0 GPU推理容器镜像,版本号为v1.27。这个新版本为基于ARM架构的Graviton处理器提供了更好的支持,同时集成了CUDA 12.4,为GPU加速的深度学习推理任务提供了强大的计算能力。
镜像技术细节
该容器镜像基于Ubuntu 22.04操作系统构建,主要包含以下关键组件:
- PyTorch 2.4.0(CUDA 12.4版本)
- Python 3.11环境
- 配套的torchvision 0.19.0和torchaudio 2.4.0
- CUDA 12.4相关工具链和库
- 常用科学计算库如NumPy 1.26.4、SciPy 1.14.1等
镜像中预装了完整的CUDA 12.4工具链,包括cublas、cudnn等关键库,为深度学习模型推理提供了硬件加速支持。同时,镜像还包含了torchserve和torch-model-archiver等工具,方便用户部署和管理PyTorch模型。
主要特性与改进
-
Graviton处理器优化:此版本专门针对AWS Graviton处理器进行了优化,充分发挥ARM架构的性能优势,相比传统x86架构可以提供更好的性价比。
-
CUDA 12.4支持:集成了最新的CUDA 12.4工具包,提供了最新的GPU加速功能,包括改进的深度学习算子性能。
-
Python 3.11环境:使用最新的Python 3.11版本,带来性能提升和新语言特性支持。
-
完整的工具链:预装了模型服务工具torchserve和模型归档工具torch-model-archiver,简化了模型部署流程。
-
科学计算生态:包含了常用的科学计算库如NumPy、SciPy、Pandas等,满足各种数据处理需求。
适用场景
这个容器镜像特别适合以下应用场景:
- 在AWS Graviton实例上部署PyTorch推理服务
- 需要GPU加速的深度学习模型推理
- 生产环境中的模型服务部署
- 需要完整PyTorch生态支持的应用开发
使用建议
对于需要在Graviton处理器上运行PyTorch GPU推理的用户,建议直接使用此预构建镜像,可以避免复杂的环境配置过程,快速获得经过AWS优化的运行环境。镜像已经包含了从底层CUDA驱动到上层PyTorch框架的完整工具链,开发者可以专注于模型开发和业务逻辑实现。
AWS Deep Learning Containers的持续更新,为机器学习开发者提供了开箱即用的解决方案,大大降低了深度学习应用的部署门槛。这个针对Graviton处理器的PyTorch GPU推理镜像的发布,进一步丰富了AWS的深度学习生态系统,为用户提供了更多架构选择。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00