Data-Juicer项目中Ray集群运行去重算子失败问题分析
问题背景
在Data-Juicer项目(一个数据处理工具库)的使用过程中,当用户尝试在Ray集群环境下运行ray_bts_minhash_deduplicator去重算子时,遇到了文件路径访问失败的问题。这个问题表现为算子无法在指定路径创建临时文件,导致整个处理流程中断。
问题现象
用户在执行去重操作时,系统报错显示无法在本地路径/data/data2/datajuicer/data-juicer-main-1.0.3/outputs/demo-dedup/.tmp/01000000/1_000001_000000.parquet创建文件,错误提示为"FileNotFoundError: [Errno 2] No such file or directory"。
根本原因分析
这个问题源于Ray集群环境下文件系统访问的特殊性。在Ray集群中,工作节点可能分布在不同的机器上,而用户指定的临时文件路径是一个本地文件系统路径。当Ray尝试在不同节点上创建或访问文件时,如果这些节点无法共享同一个文件系统,就会导致文件访问失败。
解决方案
针对这个问题,社区提供了两种解决方案:
-
使用共享文件系统:确保所有Ray节点都能访问同一个共享文件系统路径,这是最直接的解决方案。用户可以将输出路径配置为NFS或其他分布式文件系统路径。
-
修改代码使用Ray本地协议:如用户反馈所示,在代码中将路径前缀改为"local://",这样Ray会使用其内置的分布式文件系统机制处理文件访问。修改后的代码片段如下:
tmp_dir = os.path.join("local://"+ self.work_dir, '.tmp',
ray.get_runtime_context().get_job_id())
技术深入
这个问题的本质是分布式计算环境下的文件系统一致性问题。Ray作为一个分布式计算框架,其执行任务的节点可能位于不同的物理机器上。当算子尝试在本地文件系统创建文件时,不同节点看到的"本地"实际上是各自机器的本地存储,这导致了文件访问失败。
Ray提供了"local://"协议来专门处理这种情况。当使用这个协议前缀时,Ray会自动处理文件在不同节点间的分发和访问,确保文件操作的正确性。这种机制类似于Hadoop的HDFS,但更加轻量级和透明。
最佳实践建议
对于Data-Juicer项目在Ray集群上的使用,建议:
- 对于临时文件和中间结果,优先使用"local://"协议前缀
- 对于最终输出结果,可以使用共享文件系统路径
- 在配置文件中明确区分临时路径和输出路径
- 对于大规模数据处理,考虑使用对象存储(S3等)作为输出目标
总结
分布式计算环境下的文件系统访问是一个常见但容易被忽视的问题。Data-Juicer项目通过支持Ray集群执行,提供了强大的分布式数据处理能力,但同时也需要注意这类环境特有的问题。理解Ray的文件访问机制,合理配置路径,可以避免类似问题的发生,确保数据处理流程的顺利进行。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00