Data-Juicer项目中Ray集群运行BTS MinHash去重器的故障排查
问题背景
在使用Data-Juicer数据处理工具时,用户尝试在Ray集群环境下运行ray_bts_minhash_deduplicator去重算子时遇到了文件路径访问错误。该问题表现为程序无法在指定路径创建临时Parquet文件,导致整个去重过程失败。
错误现象
当用户执行以下命令时:
python tools/process_data.py --config demos/process_on_ray/configs/dedup.yaml
系统报出FileNotFoundError错误,具体表现为:
FileNotFoundError: [Errno 2] Failed to open local file '/data/data2/datajuicer/data-juicer-main-1.0.3/outputs/demo-dedup/.tmp/01000000/1_000001_000000.parquet'
根本原因分析
该问题的核心在于Ray集群环境下文件系统的访问机制。在分布式计算环境中,当使用Ray集群时:
-
文件系统共享问题:Ray集群中的各个工作节点需要能够访问相同的文件系统路径。如果临时目录位于本地文件系统而非共享存储中,不同节点将无法访问同一路径。
-
路径解析差异:Ray在执行任务时可能会在不同的节点上运行,这些节点对相同路径可能有不同的解析方式。
-
临时文件管理:BTS MinHash去重器在运行过程中需要创建临时文件来存储中间结果,这些文件需要在集群所有节点间共享。
解决方案
针对这个问题,有两种可行的解决方案:
方案一:使用共享文件系统
确保export_path配置的路径位于所有Ray节点都能访问的共享文件系统中,如NFS、HDFS或S3等分布式文件系统。这是官方推荐的解决方案。
方案二:修改代码使用Ray本地协议
用户自行发现的解决方案是修改ray_bts_minhash_deduplicator.py文件中的路径生成逻辑,添加"local://"前缀:
tmp_dir = os.path.join("local://"+ self.work_dir, '.tmp',
ray.get_runtime_context().get_job_id())
这种方法利用了Ray的本地文件协议,确保文件操作在Ray的分布式环境下正确执行。
技术原理深入
Ray的分布式文件访问机制有其特殊性:
-
本地文件协议:在Ray中使用"local://"前缀可以让Ray知道这是一个应该在各个节点本地解析的路径,而不是共享路径。
-
任务调度:Ray在执行任务时会将任务调度到不同节点,每个节点需要有独立的临时文件空间。
-
数据序列化:Ray在节点间传输数据时会进行序列化和反序列化,临时文件的管理需要与这一机制配合。
最佳实践建议
-
对于生产环境,建议使用方案一,配置真正的共享文件系统路径。
-
对于开发和测试环境,可以使用方案二作为快速解决方案。
-
在编写自定义算子时,应当考虑分布式环境下的文件访问问题,避免硬编码本地路径。
-
对于临时文件的管理,可以考虑使用Ray提供的分布式存储API,而不是直接操作文件系统。
总结
Data-Juicer项目中的ray_bts_minhash_deduplicator在Ray集群环境下运行时,需要特别注意文件系统的访问方式。这个问题典型地展示了分布式计算环境中资源访问的特殊性,开发者在设计和实现数据处理流水线时,应当充分考虑分布式环境的特性,确保代码在单机和集群环境下都能正确运行。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00