Data-Juicer项目中Ray集群运行BTS MinHash去重器的故障排查
问题背景
在使用Data-Juicer数据处理工具时,用户尝试在Ray集群环境下运行ray_bts_minhash_deduplicator去重算子时遇到了文件路径访问错误。该问题表现为程序无法在指定路径创建临时Parquet文件,导致整个去重过程失败。
错误现象
当用户执行以下命令时:
python tools/process_data.py --config demos/process_on_ray/configs/dedup.yaml
系统报出FileNotFoundError错误,具体表现为:
FileNotFoundError: [Errno 2] Failed to open local file '/data/data2/datajuicer/data-juicer-main-1.0.3/outputs/demo-dedup/.tmp/01000000/1_000001_000000.parquet'
根本原因分析
该问题的核心在于Ray集群环境下文件系统的访问机制。在分布式计算环境中,当使用Ray集群时:
-
文件系统共享问题:Ray集群中的各个工作节点需要能够访问相同的文件系统路径。如果临时目录位于本地文件系统而非共享存储中,不同节点将无法访问同一路径。
-
路径解析差异:Ray在执行任务时可能会在不同的节点上运行,这些节点对相同路径可能有不同的解析方式。
-
临时文件管理:BTS MinHash去重器在运行过程中需要创建临时文件来存储中间结果,这些文件需要在集群所有节点间共享。
解决方案
针对这个问题,有两种可行的解决方案:
方案一:使用共享文件系统
确保export_path配置的路径位于所有Ray节点都能访问的共享文件系统中,如NFS、HDFS或S3等分布式文件系统。这是官方推荐的解决方案。
方案二:修改代码使用Ray本地协议
用户自行发现的解决方案是修改ray_bts_minhash_deduplicator.py文件中的路径生成逻辑,添加"local://"前缀:
tmp_dir = os.path.join("local://"+ self.work_dir, '.tmp',
ray.get_runtime_context().get_job_id())
这种方法利用了Ray的本地文件协议,确保文件操作在Ray的分布式环境下正确执行。
技术原理深入
Ray的分布式文件访问机制有其特殊性:
-
本地文件协议:在Ray中使用"local://"前缀可以让Ray知道这是一个应该在各个节点本地解析的路径,而不是共享路径。
-
任务调度:Ray在执行任务时会将任务调度到不同节点,每个节点需要有独立的临时文件空间。
-
数据序列化:Ray在节点间传输数据时会进行序列化和反序列化,临时文件的管理需要与这一机制配合。
最佳实践建议
-
对于生产环境,建议使用方案一,配置真正的共享文件系统路径。
-
对于开发和测试环境,可以使用方案二作为快速解决方案。
-
在编写自定义算子时,应当考虑分布式环境下的文件访问问题,避免硬编码本地路径。
-
对于临时文件的管理,可以考虑使用Ray提供的分布式存储API,而不是直接操作文件系统。
总结
Data-Juicer项目中的ray_bts_minhash_deduplicator在Ray集群环境下运行时,需要特别注意文件系统的访问方式。这个问题典型地展示了分布式计算环境中资源访问的特殊性,开发者在设计和实现数据处理流水线时,应当充分考虑分布式环境的特性,确保代码在单机和集群环境下都能正确运行。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00