Data-Juicer项目中Ray集群运行BTS MinHash去重器的故障排查
问题背景
在使用Data-Juicer数据处理工具时,用户尝试在Ray集群环境下运行ray_bts_minhash_deduplicator去重算子时遇到了文件路径访问错误。该问题表现为程序无法在指定路径创建临时Parquet文件,导致整个去重过程失败。
错误现象
当用户执行以下命令时:
python tools/process_data.py --config demos/process_on_ray/configs/dedup.yaml
系统报出FileNotFoundError错误,具体表现为:
FileNotFoundError: [Errno 2] Failed to open local file '/data/data2/datajuicer/data-juicer-main-1.0.3/outputs/demo-dedup/.tmp/01000000/1_000001_000000.parquet'
根本原因分析
该问题的核心在于Ray集群环境下文件系统的访问机制。在分布式计算环境中,当使用Ray集群时:
-
文件系统共享问题:Ray集群中的各个工作节点需要能够访问相同的文件系统路径。如果临时目录位于本地文件系统而非共享存储中,不同节点将无法访问同一路径。
-
路径解析差异:Ray在执行任务时可能会在不同的节点上运行,这些节点对相同路径可能有不同的解析方式。
-
临时文件管理:BTS MinHash去重器在运行过程中需要创建临时文件来存储中间结果,这些文件需要在集群所有节点间共享。
解决方案
针对这个问题,有两种可行的解决方案:
方案一:使用共享文件系统
确保export_path配置的路径位于所有Ray节点都能访问的共享文件系统中,如NFS、HDFS或S3等分布式文件系统。这是官方推荐的解决方案。
方案二:修改代码使用Ray本地协议
用户自行发现的解决方案是修改ray_bts_minhash_deduplicator.py文件中的路径生成逻辑,添加"local://"前缀:
tmp_dir = os.path.join("local://"+ self.work_dir, '.tmp',
ray.get_runtime_context().get_job_id())
这种方法利用了Ray的本地文件协议,确保文件操作在Ray的分布式环境下正确执行。
技术原理深入
Ray的分布式文件访问机制有其特殊性:
-
本地文件协议:在Ray中使用"local://"前缀可以让Ray知道这是一个应该在各个节点本地解析的路径,而不是共享路径。
-
任务调度:Ray在执行任务时会将任务调度到不同节点,每个节点需要有独立的临时文件空间。
-
数据序列化:Ray在节点间传输数据时会进行序列化和反序列化,临时文件的管理需要与这一机制配合。
最佳实践建议
-
对于生产环境,建议使用方案一,配置真正的共享文件系统路径。
-
对于开发和测试环境,可以使用方案二作为快速解决方案。
-
在编写自定义算子时,应当考虑分布式环境下的文件访问问题,避免硬编码本地路径。
-
对于临时文件的管理,可以考虑使用Ray提供的分布式存储API,而不是直接操作文件系统。
总结
Data-Juicer项目中的ray_bts_minhash_deduplicator在Ray集群环境下运行时,需要特别注意文件系统的访问方式。这个问题典型地展示了分布式计算环境中资源访问的特殊性,开发者在设计和实现数据处理流水线时,应当充分考虑分布式环境的特性,确保代码在单机和集群环境下都能正确运行。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00