在pykan项目中实现结果可复现性的关键技术要点
2025-05-14 04:31:34作者:农烁颖Land
在机器学习研究与应用中,实验结果的可复现性是一个至关重要的课题。本文将以pykan项目为例,深入探讨如何在使用KAN(Kolmogorov-Arnold Networks)模型时确保实验结果的可复现性。
随机种子设置的基础方法
在PyTorch框架下,确保实验可复现性的第一步是正确设置随机种子。标准的设置方法包括:
import torch
import random
import numpy as np
# 设置随机种子
torch.manual_seed(6)
random.seed(6)
np.random.seed(6)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(6)
这些设置控制了Python内置随机数生成器、NumPy随机数生成器以及PyTorch在CPU和GPU上的随机数生成行为。然而,在实际应用中,仅设置这些随机种子往往不足以完全保证结果的可复现性。
影响可复现性的隐藏因素
在pykan项目中,用户报告即使设置了所有随机种子,结果仍然无法复现。经过分析,这主要源于以下两个关键因素:
-
LBFGS优化算法的非确定性操作:LBFGS(Limited-memory Broyden-Fletcher-Goldfarb-Shanno)是一种准牛顿优化算法,在PyTorch实现中可能包含非确定性操作
-
CUDA操作的随机性:即使设置了CUDA随机种子,某些CUDA操作仍可能引入非确定性
确保完全可复现性的解决方案
针对上述问题,pykan项目提供了两种有效的解决方案:
方案一:启用确定性算法模式
torch.use_deterministic_algorithms(True)
这一设置强制PyTorch使用确定性算法替代默认的可能包含非确定性操作的算法。需要注意的是,并非所有操作都有确定性实现,启用此选项可能会导致某些操作无法执行。
方案二:使用替代优化器
# 使用Adam优化器替代LBFGS
kan_model.fit(dataset, opt="adam", steps=50, lamb=0.001)
Adam优化器通常不包含非确定性操作,因此在不需要LBFGS特性的场景下,使用Adam可以获得更好的可复现性保证。
实际应用中的建议
- 组合使用多种措施:同时设置随机种子和启用确定性算法模式
- 记录完整环境信息:包括PyTorch版本、CUDA版本等
- 验证可复现性:在关键实验节点保存中间结果,验证多次运行的一致性
- 权衡性能与确定性:确定性模式可能降低性能,需根据需求权衡
在pykan项目中的具体实践
在使用pykan的KAN模型时,完整的可复现性设置应包含:
# 基础随机种子设置
torch.manual_seed(6)
random.seed(6)
np.random.seed(6)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(6)
# 启用确定性算法
torch.use_deterministic_algorithms(True)
# 设置默认数据类型
torch.set_default_dtype(torch.float64)
# 初始化KAN模型
kan_model = KAN(width = [1,5,1], grid = 3, k = 3, seed = 6, device = device)
通过以上设置,可以确保KAN模型从初始化到训练全过程的可复现性,为科研工作的严谨性提供保障。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133