在pykan项目中实现结果可复现性的关键技术要点
2025-05-14 00:48:14作者:农烁颖Land
在机器学习研究与应用中,实验结果的可复现性是一个至关重要的课题。本文将以pykan项目为例,深入探讨如何在使用KAN(Kolmogorov-Arnold Networks)模型时确保实验结果的可复现性。
随机种子设置的基础方法
在PyTorch框架下,确保实验可复现性的第一步是正确设置随机种子。标准的设置方法包括:
import torch
import random
import numpy as np
# 设置随机种子
torch.manual_seed(6)
random.seed(6)
np.random.seed(6)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(6)
这些设置控制了Python内置随机数生成器、NumPy随机数生成器以及PyTorch在CPU和GPU上的随机数生成行为。然而,在实际应用中,仅设置这些随机种子往往不足以完全保证结果的可复现性。
影响可复现性的隐藏因素
在pykan项目中,用户报告即使设置了所有随机种子,结果仍然无法复现。经过分析,这主要源于以下两个关键因素:
-
LBFGS优化算法的非确定性操作:LBFGS(Limited-memory Broyden-Fletcher-Goldfarb-Shanno)是一种准牛顿优化算法,在PyTorch实现中可能包含非确定性操作
-
CUDA操作的随机性:即使设置了CUDA随机种子,某些CUDA操作仍可能引入非确定性
确保完全可复现性的解决方案
针对上述问题,pykan项目提供了两种有效的解决方案:
方案一:启用确定性算法模式
torch.use_deterministic_algorithms(True)
这一设置强制PyTorch使用确定性算法替代默认的可能包含非确定性操作的算法。需要注意的是,并非所有操作都有确定性实现,启用此选项可能会导致某些操作无法执行。
方案二:使用替代优化器
# 使用Adam优化器替代LBFGS
kan_model.fit(dataset, opt="adam", steps=50, lamb=0.001)
Adam优化器通常不包含非确定性操作,因此在不需要LBFGS特性的场景下,使用Adam可以获得更好的可复现性保证。
实际应用中的建议
- 组合使用多种措施:同时设置随机种子和启用确定性算法模式
- 记录完整环境信息:包括PyTorch版本、CUDA版本等
- 验证可复现性:在关键实验节点保存中间结果,验证多次运行的一致性
- 权衡性能与确定性:确定性模式可能降低性能,需根据需求权衡
在pykan项目中的具体实践
在使用pykan的KAN模型时,完整的可复现性设置应包含:
# 基础随机种子设置
torch.manual_seed(6)
random.seed(6)
np.random.seed(6)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(6)
# 启用确定性算法
torch.use_deterministic_algorithms(True)
# 设置默认数据类型
torch.set_default_dtype(torch.float64)
# 初始化KAN模型
kan_model = KAN(width = [1,5,1], grid = 3, k = 3, seed = 6, device = device)
通过以上设置,可以确保KAN模型从初始化到训练全过程的可复现性,为科研工作的严谨性提供保障。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249