在pykan项目中实现结果可复现性的关键技术要点
2025-05-14 03:55:09作者:农烁颖Land
在机器学习研究与应用中,实验结果的可复现性是一个至关重要的课题。本文将以pykan项目为例,深入探讨如何在使用KAN(Kolmogorov-Arnold Networks)模型时确保实验结果的可复现性。
随机种子设置的基础方法
在PyTorch框架下,确保实验可复现性的第一步是正确设置随机种子。标准的设置方法包括:
import torch
import random
import numpy as np
# 设置随机种子
torch.manual_seed(6)
random.seed(6)
np.random.seed(6)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(6)
这些设置控制了Python内置随机数生成器、NumPy随机数生成器以及PyTorch在CPU和GPU上的随机数生成行为。然而,在实际应用中,仅设置这些随机种子往往不足以完全保证结果的可复现性。
影响可复现性的隐藏因素
在pykan项目中,用户报告即使设置了所有随机种子,结果仍然无法复现。经过分析,这主要源于以下两个关键因素:
-
LBFGS优化算法的非确定性操作:LBFGS(Limited-memory Broyden-Fletcher-Goldfarb-Shanno)是一种准牛顿优化算法,在PyTorch实现中可能包含非确定性操作
-
CUDA操作的随机性:即使设置了CUDA随机种子,某些CUDA操作仍可能引入非确定性
确保完全可复现性的解决方案
针对上述问题,pykan项目提供了两种有效的解决方案:
方案一:启用确定性算法模式
torch.use_deterministic_algorithms(True)
这一设置强制PyTorch使用确定性算法替代默认的可能包含非确定性操作的算法。需要注意的是,并非所有操作都有确定性实现,启用此选项可能会导致某些操作无法执行。
方案二:使用替代优化器
# 使用Adam优化器替代LBFGS
kan_model.fit(dataset, opt="adam", steps=50, lamb=0.001)
Adam优化器通常不包含非确定性操作,因此在不需要LBFGS特性的场景下,使用Adam可以获得更好的可复现性保证。
实际应用中的建议
- 组合使用多种措施:同时设置随机种子和启用确定性算法模式
- 记录完整环境信息:包括PyTorch版本、CUDA版本等
- 验证可复现性:在关键实验节点保存中间结果,验证多次运行的一致性
- 权衡性能与确定性:确定性模式可能降低性能,需根据需求权衡
在pykan项目中的具体实践
在使用pykan的KAN模型时,完整的可复现性设置应包含:
# 基础随机种子设置
torch.manual_seed(6)
random.seed(6)
np.random.seed(6)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(6)
# 启用确定性算法
torch.use_deterministic_algorithms(True)
# 设置默认数据类型
torch.set_default_dtype(torch.float64)
# 初始化KAN模型
kan_model = KAN(width = [1,5,1], grid = 3, k = 3, seed = 6, device = device)
通过以上设置,可以确保KAN模型从初始化到训练全过程的可复现性,为科研工作的严谨性提供保障。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
81
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1