Apache Fury序列化性能优化实践与Jdk序列化对比分析
2025-06-25 01:41:25作者:翟江哲Frasier
背景概述
在分布式系统开发中,高效的对象序列化方案对系统性能有着重要影响。Apache Fury作为新一代的高性能序列化框架,其设计目标是通过创新的编解码技术显著提升序列化/反序列化效率。本文将基于实际测试案例,深入分析Fury与JDK原生序列化在不同场景下的性能表现差异。
核心测试场景
测试对比了两种序列化方案处理字符串和自定义对象(HttpError)的性能表现:
-
字符串序列化测试
- 测试字符串:"wqweqweqewqeqweqweqeqweqweqweqwe"
- 初始测试显示Fury耗时2ms,JDK序列化耗时4ms
-
复杂对象序列化测试
- 自定义HttpError对象测试
- 首次执行时Fury耗时44ms,JDK仅1ms
- 后续执行性能显著改善
关键发现与技术原理
首次执行性能现象
测试中观察到一个重要现象:首次序列化复杂对象时,Fury表现出明显的延迟(44ms),远高于JDK序列化。这源于Fury的核心优化机制:
-
动态代码生成技术
- Fury在首次处理某类对象时,会动态生成针对该类的专用序列化代码
- 这个过程涉及类分析、字节码生成和JIT编译等步骤
- 代码生成完成后会被缓存复用
-
预热期概念
- 类似JVM的JIT编译,Fury需要"预热"过程
- 首次执行后生成的优化代码可使后续操作获得数量级的性能提升
持续优化建议
要准确评估Fury性能,应当:
- 进行充分的预热测试
- 使用专业的基准测试工具(如JMH)
- 考虑长期运行的性能收益而非单次操作
最佳实践建议
-
生产环境配置
Fury.builder() .withLanguage(Language.JAVA) .withRefTracking(false) // 关闭引用追踪提升性能 .withCompatibleMode(CompatibleMode.SCHEMA_CONSISTENT) .withAsyncCompilation(true) // 启用异步编译减少初始化影响 .requireClassRegistration(false) .buildThreadSafeFury(); -
性能测试方法论
- 至少执行千次以上测试消除JVM干扰
- 区分冷启动和热路径性能
- 测试不同数据规模和结构
结论
Apache Fury通过创新的运行时代码生成技术,在长期运行场景下可提供显著的性能优势。虽然初始化的代码生成阶段会产生一定开销,但这种一次性成本换来的是后续操作的高效执行。对于需要高频序列化的分布式系统,采用Fury并配合适当的预热策略,能够获得比JDK原生序列化更好的整体性能表现。
开发者在性能评估时应当建立全面的测试策略,既关注首次执行的初始化成本,也要衡量系统稳定运行后的持续性能,才能做出准确的技术选型决策。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26