Apache Fury 与 Protobuf 对象序列化性能对比分析
2025-06-25 11:26:42作者:苗圣禹Peter
Apache Fury 作为一款高性能的序列化框架,在实际应用中常被拿来与 Protobuf 进行性能对比。本文针对 Java 环境下 Protobuf 生成对象的序列化场景,深入分析 Fury 与原生 Protobuf 的性能差异及其技术原因。
问题背景
在搜索推荐系统的模型推理场景中,开发者需要将 Java POJO 转换为 Protobuf 对象后进行序列化传输。测试发现:
- 直接序列化 POJO 时,Fury 产生的数据体积明显大于 Protobuf
- 序列化 Protobuf 生成对象时,Fury(23ms)略慢于原生 Protobuf(20ms)
技术分析
Protobuf 对象的特殊性
Protobuf 生成的 Java 类具有以下特点:
- 包含大量内部状态字段(如 memoizedHashCode、bitField0_等)
- 实现了 writeReplace 方法(JDK 序列化机制)
- 使用 WeakHashMap 等特殊数据结构
- 存在循环引用关系
这些特性使得 Protobuf 对象:
- 专为 Protobuf 自身序列化优化
- 不适用于通用序列化框架
- 包含大量冗余字段(仅对 Protobuf 有意义)
Fury 的兼容性处理
当 Fury 序列化 Protobuf 对象时:
- 默认会调用 writeReplace 方法保持兼容性
- 实际执行的是 Protobuf 自身的序列化逻辑
- 额外增加了 Fury 的封装开销
性能优化建议
对于必须使用 Protobuf 对象的场景:
- 配置优化:
Fury fury = Fury.builder()
.withLanguage(Language.JAVA)
.withRefTracking(false) // 禁用引用追踪
.build();
- 类型注册:
fury.register(GrpcService.ModelInferRequest.class);
fury.register(GrpcService.InferTensorContents.class);
- 绕过 writeReplace:
fury.getClassResolver().setSerializerFactory((f, c) -> {
if (Message.class.isAssignableFrom(c)) {
return Serializers.newSerializer(f, c,
f.getClassResolver().getObjectSerializerClass(c, x -> {}));
}
return null;
});
深入解决方案
方案一:定制 Protobuf 序列化器
可参考 Twitter Chill 项目的实现思路,为 Fury 开发专用的 ProtobufSerializer:
- 内部直接调用 Protobuf 的 toByteArray/parseFrom 方法
- 保持 Protobuf 的二进制兼容性
- 避免 Fury 的额外开销
方案二:POJO 结构优化
针对 POJO 序列化体积大的问题:
- 检查是否误用 JDK 序列化方法
- 优化集合类型的使用方式
- 使用 @FuryIgnore 注解排除非必要字段
最佳实践建议
- 新系统设计:
- 直接使用 POJO + Fury,避免 Protobuf 转换开销
- 保持对象结构的简洁性
- 遗留系统迁移:
- 评估定制 Protobuf 序列化器的成本
- 逐步将 Protobuf 对象替换为标准 POJO
- 性能关键场景:
- 保持使用原生 Protobuf 序列化
- 考虑混合使用 Fury 和 Protobuf
总结
Protobuf 生成的 Java 对象因其特殊的内部结构,不适合直接使用通用序列化框架处理。对于性能敏感场景,建议:
- 要么完全使用 Protobuf 生态
- 要么完全使用 Fury + POJO 方案
- 混合方案需要谨慎评估序列化边界
Fury 团队正在开发 Python 端的优化方案,未来可能提供跨语言的完整解决方案。对于现有系统,开发者需要根据具体场景选择最适合的序列化策略。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1