Apache Fury 与 Protobuf 对象序列化性能对比分析
2025-06-25 12:39:22作者:苗圣禹Peter
Apache Fury 作为一款高性能的序列化框架,在实际应用中常被拿来与 Protobuf 进行性能对比。本文针对 Java 环境下 Protobuf 生成对象的序列化场景,深入分析 Fury 与原生 Protobuf 的性能差异及其技术原因。
问题背景
在搜索推荐系统的模型推理场景中,开发者需要将 Java POJO 转换为 Protobuf 对象后进行序列化传输。测试发现:
- 直接序列化 POJO 时,Fury 产生的数据体积明显大于 Protobuf
- 序列化 Protobuf 生成对象时,Fury(23ms)略慢于原生 Protobuf(20ms)
技术分析
Protobuf 对象的特殊性
Protobuf 生成的 Java 类具有以下特点:
- 包含大量内部状态字段(如 memoizedHashCode、bitField0_等)
- 实现了 writeReplace 方法(JDK 序列化机制)
- 使用 WeakHashMap 等特殊数据结构
- 存在循环引用关系
这些特性使得 Protobuf 对象:
- 专为 Protobuf 自身序列化优化
- 不适用于通用序列化框架
- 包含大量冗余字段(仅对 Protobuf 有意义)
Fury 的兼容性处理
当 Fury 序列化 Protobuf 对象时:
- 默认会调用 writeReplace 方法保持兼容性
- 实际执行的是 Protobuf 自身的序列化逻辑
- 额外增加了 Fury 的封装开销
性能优化建议
对于必须使用 Protobuf 对象的场景:
- 配置优化:
Fury fury = Fury.builder()
.withLanguage(Language.JAVA)
.withRefTracking(false) // 禁用引用追踪
.build();
- 类型注册:
fury.register(GrpcService.ModelInferRequest.class);
fury.register(GrpcService.InferTensorContents.class);
- 绕过 writeReplace:
fury.getClassResolver().setSerializerFactory((f, c) -> {
if (Message.class.isAssignableFrom(c)) {
return Serializers.newSerializer(f, c,
f.getClassResolver().getObjectSerializerClass(c, x -> {}));
}
return null;
});
深入解决方案
方案一:定制 Protobuf 序列化器
可参考 Twitter Chill 项目的实现思路,为 Fury 开发专用的 ProtobufSerializer:
- 内部直接调用 Protobuf 的 toByteArray/parseFrom 方法
- 保持 Protobuf 的二进制兼容性
- 避免 Fury 的额外开销
方案二:POJO 结构优化
针对 POJO 序列化体积大的问题:
- 检查是否误用 JDK 序列化方法
- 优化集合类型的使用方式
- 使用 @FuryIgnore 注解排除非必要字段
最佳实践建议
- 新系统设计:
- 直接使用 POJO + Fury,避免 Protobuf 转换开销
- 保持对象结构的简洁性
- 遗留系统迁移:
- 评估定制 Protobuf 序列化器的成本
- 逐步将 Protobuf 对象替换为标准 POJO
- 性能关键场景:
- 保持使用原生 Protobuf 序列化
- 考虑混合使用 Fury 和 Protobuf
总结
Protobuf 生成的 Java 对象因其特殊的内部结构,不适合直接使用通用序列化框架处理。对于性能敏感场景,建议:
- 要么完全使用 Protobuf 生态
- 要么完全使用 Fury + POJO 方案
- 混合方案需要谨慎评估序列化边界
Fury 团队正在开发 Python 端的优化方案,未来可能提供跨语言的完整解决方案。对于现有系统,开发者需要根据具体场景选择最适合的序列化策略。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K