Apache Fury 与 Protobuf 对象序列化性能对比分析
2025-06-25 21:06:52作者:苗圣禹Peter
Apache Fury 作为一款高性能的序列化框架,在实际应用中常被拿来与 Protobuf 进行性能对比。本文针对 Java 环境下 Protobuf 生成对象的序列化场景,深入分析 Fury 与原生 Protobuf 的性能差异及其技术原因。
问题背景
在搜索推荐系统的模型推理场景中,开发者需要将 Java POJO 转换为 Protobuf 对象后进行序列化传输。测试发现:
- 直接序列化 POJO 时,Fury 产生的数据体积明显大于 Protobuf
- 序列化 Protobuf 生成对象时,Fury(23ms)略慢于原生 Protobuf(20ms)
技术分析
Protobuf 对象的特殊性
Protobuf 生成的 Java 类具有以下特点:
- 包含大量内部状态字段(如 memoizedHashCode、bitField0_等)
- 实现了 writeReplace 方法(JDK 序列化机制)
- 使用 WeakHashMap 等特殊数据结构
- 存在循环引用关系
这些特性使得 Protobuf 对象:
- 专为 Protobuf 自身序列化优化
- 不适用于通用序列化框架
- 包含大量冗余字段(仅对 Protobuf 有意义)
Fury 的兼容性处理
当 Fury 序列化 Protobuf 对象时:
- 默认会调用 writeReplace 方法保持兼容性
- 实际执行的是 Protobuf 自身的序列化逻辑
- 额外增加了 Fury 的封装开销
性能优化建议
对于必须使用 Protobuf 对象的场景:
- 配置优化:
Fury fury = Fury.builder()
.withLanguage(Language.JAVA)
.withRefTracking(false) // 禁用引用追踪
.build();
- 类型注册:
fury.register(GrpcService.ModelInferRequest.class);
fury.register(GrpcService.InferTensorContents.class);
- 绕过 writeReplace:
fury.getClassResolver().setSerializerFactory((f, c) -> {
if (Message.class.isAssignableFrom(c)) {
return Serializers.newSerializer(f, c,
f.getClassResolver().getObjectSerializerClass(c, x -> {}));
}
return null;
});
深入解决方案
方案一:定制 Protobuf 序列化器
可参考 Twitter Chill 项目的实现思路,为 Fury 开发专用的 ProtobufSerializer:
- 内部直接调用 Protobuf 的 toByteArray/parseFrom 方法
- 保持 Protobuf 的二进制兼容性
- 避免 Fury 的额外开销
方案二:POJO 结构优化
针对 POJO 序列化体积大的问题:
- 检查是否误用 JDK 序列化方法
- 优化集合类型的使用方式
- 使用 @FuryIgnore 注解排除非必要字段
最佳实践建议
- 新系统设计:
- 直接使用 POJO + Fury,避免 Protobuf 转换开销
- 保持对象结构的简洁性
- 遗留系统迁移:
- 评估定制 Protobuf 序列化器的成本
- 逐步将 Protobuf 对象替换为标准 POJO
- 性能关键场景:
- 保持使用原生 Protobuf 序列化
- 考虑混合使用 Fury 和 Protobuf
总结
Protobuf 生成的 Java 对象因其特殊的内部结构,不适合直接使用通用序列化框架处理。对于性能敏感场景,建议:
- 要么完全使用 Protobuf 生态
- 要么完全使用 Fury + POJO 方案
- 混合方案需要谨慎评估序列化边界
Fury 团队正在开发 Python 端的优化方案,未来可能提供跨语言的完整解决方案。对于现有系统,开发者需要根据具体场景选择最适合的序列化策略。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896