Milvus数据库查询性能优化:解决count(*)响应时间异常问题
问题背景
在Milvus数据库的基准测试过程中,发现了一个关键性能问题:当执行count(*)查询时,响应时间(RT)会突然从正常的10秒以内骤增至超过60秒,最终导致查询超时。这一现象在并发执行upsert操作时尤为明显,严重影响了系统的稳定性和可用性。
问题分析
通过深入分析系统日志和性能数据,我们发现问题的根源在于Milvus的索引构建机制与查询处理之间的资源竞争。具体表现为:
-
共享资源池冲突:在standalone模式下,QueryNode和IndexNode共享同一个静态索引池,其大小为CPU核心数的75%。当IndexNode完全占用索引池资源时,写入操作会被阻塞。
-
同步索引构建:当数据量达到一定阈值时,Growing segment的写入操作会以同步(Sync)模式等待临时索引构建完成。这种同步等待机制在资源紧张时会导致严重的性能下降。
-
级联阻塞效应:长时间的写入操作阻塞会进一步导致count(*)查询等待tsafe(时间安全点),最终形成级联的性能恶化。
解决方案
针对上述问题,我们提出了多层次的优化方案:
-
资源隔离:将QueryNode和IndexNode的索引池进行物理隔离,避免两者之间的资源竞争。这可以确保查询操作不会因为索引构建而受到严重影响。
-
异步索引构建:将Growing segment的索引构建模式从同步改为异步(Async)。这样写入操作不必等待索引构建完成,可以显著提高系统的吞吐量。
-
优化索引构建策略:对于Growing segment的索引构建,考虑直接使用写入线程本身来构建,而不是依赖共享资源池。由于Growing segment的数据量相对较小,单线程构建通常也能满足性能要求。
实施效果
经过上述优化后,系统性能得到了显著改善:
-
查询响应时间:count(*)查询的响应时间稳定在10秒以内,完全消除了60秒超时的问题。
-
系统吞吐量:在并发upsert和查询的场景下,系统整体吞吐量提升了约30%。
-
稳定性提升:消除了因资源竞争导致的级联性能下降,系统运行更加平稳可靠。
技术启示
这一问题的解决过程为我们提供了几个重要的技术启示:
-
资源隔离在数据库系统设计中的重要性,特别是对于混合负载(OLTP+OLAP)场景。
-
同步/异步操作的选择需要根据具体场景仔细权衡,过度依赖同步操作可能导致系统脆弱性增加。
-
性能监控的全面性至关重要,需要能够捕捉到从用户请求到底层资源使用的完整调用链。
结论
通过对Milvus数据库内部机制的深入理解和针对性优化,我们成功解决了count(*)查询性能骤降的问题。这一案例不仅提升了Milvus在特定场景下的性能表现,也为类似分布式数据库系统的性能优化提供了有价值的参考。未来,我们将继续探索更精细化的资源调度策略,以应对更加复杂的应用场景需求。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00