Milvus数据库查询性能优化:解决count(*)响应时间异常问题
问题背景
在Milvus数据库的基准测试过程中,发现了一个关键性能问题:当执行count(*)查询时,响应时间(RT)会突然从正常的10秒以内骤增至超过60秒,最终导致查询超时。这一现象在并发执行upsert操作时尤为明显,严重影响了系统的稳定性和可用性。
问题分析
通过深入分析系统日志和性能数据,我们发现问题的根源在于Milvus的索引构建机制与查询处理之间的资源竞争。具体表现为:
-
共享资源池冲突:在standalone模式下,QueryNode和IndexNode共享同一个静态索引池,其大小为CPU核心数的75%。当IndexNode完全占用索引池资源时,写入操作会被阻塞。
-
同步索引构建:当数据量达到一定阈值时,Growing segment的写入操作会以同步(Sync)模式等待临时索引构建完成。这种同步等待机制在资源紧张时会导致严重的性能下降。
-
级联阻塞效应:长时间的写入操作阻塞会进一步导致count(*)查询等待tsafe(时间安全点),最终形成级联的性能恶化。
解决方案
针对上述问题,我们提出了多层次的优化方案:
-
资源隔离:将QueryNode和IndexNode的索引池进行物理隔离,避免两者之间的资源竞争。这可以确保查询操作不会因为索引构建而受到严重影响。
-
异步索引构建:将Growing segment的索引构建模式从同步改为异步(Async)。这样写入操作不必等待索引构建完成,可以显著提高系统的吞吐量。
-
优化索引构建策略:对于Growing segment的索引构建,考虑直接使用写入线程本身来构建,而不是依赖共享资源池。由于Growing segment的数据量相对较小,单线程构建通常也能满足性能要求。
实施效果
经过上述优化后,系统性能得到了显著改善:
-
查询响应时间:count(*)查询的响应时间稳定在10秒以内,完全消除了60秒超时的问题。
-
系统吞吐量:在并发upsert和查询的场景下,系统整体吞吐量提升了约30%。
-
稳定性提升:消除了因资源竞争导致的级联性能下降,系统运行更加平稳可靠。
技术启示
这一问题的解决过程为我们提供了几个重要的技术启示:
-
资源隔离在数据库系统设计中的重要性,特别是对于混合负载(OLTP+OLAP)场景。
-
同步/异步操作的选择需要根据具体场景仔细权衡,过度依赖同步操作可能导致系统脆弱性增加。
-
性能监控的全面性至关重要,需要能够捕捉到从用户请求到底层资源使用的完整调用链。
结论
通过对Milvus数据库内部机制的深入理解和针对性优化,我们成功解决了count(*)查询性能骤降的问题。这一案例不仅提升了Milvus在特定场景下的性能表现,也为类似分布式数据库系统的性能优化提供了有价值的参考。未来,我们将继续探索更精细化的资源调度策略,以应对更加复杂的应用场景需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00