amazon-sagemaker-feature-store-end-to-end-workshop 的项目扩展与二次开发
2025-05-14 05:09:23作者:庞眉杨Will
1、项目的基础介绍
本项目是一个由亚马逊提供的关于Amazon SageMaker Feature Store的端到端工作坊示例。它旨在展示如何使用Amazon SageMaker Feature Store来存储、管理和共享机器学习模型特征数据。通过此项目,开发人员可以学习如何在实际应用中有效地利用特征存储,从而提升机器学习模型的性能。
2、项目的核心功能
项目的核心功能包括:
- 使用Amazon SageMaker Feature Store创建和管理工作特征组。
- 将数据从Amazon S3存储桶导入到SageMaker Feature Store。
- 使用SageMaker构建机器学习模型,并将模型特征存储到Feature Store中。
- 利用存储在Feature Store中的特征进行模型训练和推理。
3、项目使用了哪些框架或库?
该项目主要使用了以下框架和库:
- Amazon SageMaker:用于构建、训练和部署机器学习模型。
- Amazon S3:用于存储数据。
- Pandas:用于数据处理和分析。
- Boto3:Amazon Web Services (AWS)的Python SDK,用于与AWS服务进行交互。
4、项目的代码目录及介绍
项目的代码目录结构大致如下:
amazon-sagemaker-feature-store-end-to-end-workshop/
├── data/ # 存储输入数据
├── notebooks/ # Jupyter笔记本,包含项目的核心代码
│ ├── setup_notebook.ipynb # 环境设置和配置
│ ├── data-ingestion.ipynb # 数据摄取和特征组创建
│ ├── feature-engineering.ipynb # 特征工程
│ ├── model-building.ipynb # 模型构建
│ └── model-deployment.ipynb # 模型部署
├── scripts/ # 脚本文件
└── requirements.txt # 项目依赖
5、对项目进行扩展或者二次开发的方向
以下是几个可能的扩展或二次开发方向:
- 数据源整合:集成更多类型的数据源,如实时数据流、数据库等,以丰富特征组的数据。
- 特征自动化:开发自动化特征生成和更新的机制,提高特征工程效率。
- 模型优化:引入更多的机器学习算法和模型优化技术,提升模型性能。
- 模型监控:集成模型监控工具,实现实时监控模型的表现和漂移情况。
- 多模型支持:扩展项目以支持多种类型的机器学习模型,如深度学习模型等。
- 用户界面:开发一个用户界面,以便非技术用户也能轻松地管理和使用特征存储。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
310
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1