PVSE 项目教程
2024-09-21 08:52:35作者:郜逊炳
项目介绍
PVSE(Polysemous Visual-Semantic Embedding)是一个用于跨模态检索的 PyTorch 实现项目。该项目在 CVPR 2019 中提出,旨在通过视觉和语义嵌入来实现图像和文本之间的跨模态检索。PVSE 项目包含了一个网络模型和 MRW 数据集,适用于学术用途。
项目快速启动
环境设置
首先,创建一个虚拟环境并安装所需的包:
python3 -m venv pvse_env
source pvse_env/bin/activate
pip3 install Cython
pip3 install -r requirements.txt
数据准备
下载并准备 MRW 数据集:
cd data
bash prepare_mrw_dataset.sh
根据提示选择是否下载视频数据并进行处理。
模型训练
使用以下命令训练 PVSE 模型:
python3 train.py --data_name mrw --max_video_length 4 --cnn_type resnet18 --wemb_type glove --margin 0.1 --num_embeds 4 --img_attention --txt_attention --mmd_weight 0.01 --div_weight 0.1 --batch_size 128
模型评估
使用预训练模型进行评估:
python3 eval.py --data_name mrw --num_embeds 5 --img_attention --txt_attention --max_video_length 4 --legacy --ckpt /path/to/pretrained/model
应用案例和最佳实践
案例1:图像到文本的检索
在图像到文本的检索任务中,PVSE 模型能够有效地将图像与描述文本进行匹配。例如,给定一张图片,模型可以检索出最相关的文本描述。
案例2:文本到图像的检索
在文本到图像的检索任务中,PVSE 模型能够根据输入的文本描述检索出最相关的图像。例如,输入一段描述“一只猫在沙发上睡觉”,模型可以检索出符合描述的图像。
最佳实践
- 数据预处理:确保数据集的预处理步骤正确,包括图像的缩放、归一化等。
- 超参数调优:根据具体任务调整模型的超参数,如学习率、批量大小等。
- 模型评估:使用多种评估指标(如 R@1, R@5, R@10)来评估模型的性能。
典型生态项目
1. PyTorch
PVSE 项目基于 PyTorch 框架实现,PyTorch 是一个广泛使用的深度学习框架,提供了丰富的工具和库来支持模型的开发和训练。
2. GloVe
GloVe 是一种用于词嵌入的算法,PVSE 项目中使用了 GloVe 来生成文本的嵌入表示。
3. ResNet
ResNet 是一种深度残差网络,PVSE 项目中使用了 ResNet 作为图像的特征提取器。
4. MRW 数据集
MRW 数据集是 PVSE 项目中使用的主要数据集,包含了大量的视频-句子对,适用于跨模态检索任务。
通过以上模块的介绍和实践,您可以快速上手并深入理解 PVSE 项目。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248