PVSE 项目教程
2024-09-21 11:38:08作者:郜逊炳
项目介绍
PVSE(Polysemous Visual-Semantic Embedding)是一个用于跨模态检索的 PyTorch 实现项目。该项目在 CVPR 2019 中提出,旨在通过视觉和语义嵌入来实现图像和文本之间的跨模态检索。PVSE 项目包含了一个网络模型和 MRW 数据集,适用于学术用途。
项目快速启动
环境设置
首先,创建一个虚拟环境并安装所需的包:
python3 -m venv pvse_env
source pvse_env/bin/activate
pip3 install Cython
pip3 install -r requirements.txt
数据准备
下载并准备 MRW 数据集:
cd data
bash prepare_mrw_dataset.sh
根据提示选择是否下载视频数据并进行处理。
模型训练
使用以下命令训练 PVSE 模型:
python3 train.py --data_name mrw --max_video_length 4 --cnn_type resnet18 --wemb_type glove --margin 0.1 --num_embeds 4 --img_attention --txt_attention --mmd_weight 0.01 --div_weight 0.1 --batch_size 128
模型评估
使用预训练模型进行评估:
python3 eval.py --data_name mrw --num_embeds 5 --img_attention --txt_attention --max_video_length 4 --legacy --ckpt /path/to/pretrained/model
应用案例和最佳实践
案例1:图像到文本的检索
在图像到文本的检索任务中,PVSE 模型能够有效地将图像与描述文本进行匹配。例如,给定一张图片,模型可以检索出最相关的文本描述。
案例2:文本到图像的检索
在文本到图像的检索任务中,PVSE 模型能够根据输入的文本描述检索出最相关的图像。例如,输入一段描述“一只猫在沙发上睡觉”,模型可以检索出符合描述的图像。
最佳实践
- 数据预处理:确保数据集的预处理步骤正确,包括图像的缩放、归一化等。
- 超参数调优:根据具体任务调整模型的超参数,如学习率、批量大小等。
- 模型评估:使用多种评估指标(如 R@1, R@5, R@10)来评估模型的性能。
典型生态项目
1. PyTorch
PVSE 项目基于 PyTorch 框架实现,PyTorch 是一个广泛使用的深度学习框架,提供了丰富的工具和库来支持模型的开发和训练。
2. GloVe
GloVe 是一种用于词嵌入的算法,PVSE 项目中使用了 GloVe 来生成文本的嵌入表示。
3. ResNet
ResNet 是一种深度残差网络,PVSE 项目中使用了 ResNet 作为图像的特征提取器。
4. MRW 数据集
MRW 数据集是 PVSE 项目中使用的主要数据集,包含了大量的视频-句子对,适用于跨模态检索任务。
通过以上模块的介绍和实践,您可以快速上手并深入理解 PVSE 项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110