DataFusion中冗余重分区操作的分析与优化
2025-05-31 20:17:23作者:翟江哲Frasier
在Apache DataFusion查询引擎的物理计划生成过程中,我们发现了一个值得关注的重分区模式:当执行某些查询时,物理计划中会出现连续的RoundRobinBatch和Hash两种重分区操作。本文将深入分析这一现象的技术背景、产生原因以及可能的优化方向。
现象描述
在DataFusion生成的物理计划中,经常可以观察到以下执行模式:
- 首先使用
RoundRobinBatch策略对数据进行重分区 - 紧接着使用
Hash策略再次重分区
这种模式出现在多种查询场景中,特别是涉及表连接操作时。从表面上看,这种连续的重分区似乎存在冗余,因为Hash重分区本身也支持分区数量的增加。
技术背景
重分区操作的作用
在分布式查询处理中,重分区(Repartition)是关键的并行处理技术,主要实现两个目的:
- 改变数据分布方式,满足特定操作的需求(如Hash Join需要按连接键分布数据)
- 调整并行度,提高计算资源利用率
DataFusion的重分区实现
DataFusion提供了多种重分区策略:
RoundRobinBatch:简单轮询分配数据到各分区Hash:根据哈希值分配数据SinglePartition:合并到单个分区
冗余重分区的设计考量
虽然表面上看连续的重分区存在冗余,但实际上这种设计有合理的性能考量:
- 并行度提升:
RoundRobinBatch首先将数据均匀分布到多个工作线程 - 并行哈希计算:后续的
Hash重分区可以利用已有并行度,各工作线程可以并行计算哈希值
如果直接使用Hash重分区从单分区扩展到多分区,计算哈希值的阶段将无法并行化,成为性能瓶颈。
性能影响分析
通过TPC-H基准测试对比,我们观察到:
-
在SF=1(数据量较小)场景下:
- 11个查询有性能提升
- 1个查询略有下降
- 10个查询无明显变化
- 总体时间从1260.20ms降至1203.49ms
-
在SF=10(数据量较大)场景下:
- 4个查询有性能提升
- 2个查询略有下降
- 16个查询无明显变化
- 总体时间从13071.91ms降至13007.25ms
这些结果表明,在某些场景下优化重分区策略确实能带来性能提升,但影响程度与数据规模相关。
优化方向探讨
虽然当前设计有其合理性,但仍有优化空间:
- 合并操作:开发一个能同时完成并行度提升和哈希重分区的复合操作符
- 动态策略选择:根据数据量大小自动选择最优重分区策略
- 代价模型优化:更精确地评估重分区操作的开销和收益
结论
DataFusion中连续的RoundRobinBatch和Hash重分区看似冗余,实则是为了充分利用并行计算能力而设计的合理模式。虽然在某些场景下存在优化空间,但在当前架构下,这种设计能够有效平衡功能需求和性能表现。未来可以通过开发更智能的重分区策略来进一步提升查询性能。
对于开发者而言,理解这种设计背后的考量有助于更好地使用和优化DataFusion查询引擎,特别是在处理分布式查询时能够做出更合理的性能调优决策。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
191
210
暂无简介
Dart
630
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
107
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210