DataFusion中冗余重分区操作的分析与优化
2025-05-31 17:38:33作者:翟江哲Frasier
在Apache DataFusion查询引擎的物理计划生成过程中,我们发现了一个值得关注的重分区模式:当执行某些查询时,物理计划中会出现连续的RoundRobinBatch和Hash两种重分区操作。本文将深入分析这一现象的技术背景、产生原因以及可能的优化方向。
现象描述
在DataFusion生成的物理计划中,经常可以观察到以下执行模式:
- 首先使用
RoundRobinBatch策略对数据进行重分区 - 紧接着使用
Hash策略再次重分区
这种模式出现在多种查询场景中,特别是涉及表连接操作时。从表面上看,这种连续的重分区似乎存在冗余,因为Hash重分区本身也支持分区数量的增加。
技术背景
重分区操作的作用
在分布式查询处理中,重分区(Repartition)是关键的并行处理技术,主要实现两个目的:
- 改变数据分布方式,满足特定操作的需求(如Hash Join需要按连接键分布数据)
- 调整并行度,提高计算资源利用率
DataFusion的重分区实现
DataFusion提供了多种重分区策略:
RoundRobinBatch:简单轮询分配数据到各分区Hash:根据哈希值分配数据SinglePartition:合并到单个分区
冗余重分区的设计考量
虽然表面上看连续的重分区存在冗余,但实际上这种设计有合理的性能考量:
- 并行度提升:
RoundRobinBatch首先将数据均匀分布到多个工作线程 - 并行哈希计算:后续的
Hash重分区可以利用已有并行度,各工作线程可以并行计算哈希值
如果直接使用Hash重分区从单分区扩展到多分区,计算哈希值的阶段将无法并行化,成为性能瓶颈。
性能影响分析
通过TPC-H基准测试对比,我们观察到:
-
在SF=1(数据量较小)场景下:
- 11个查询有性能提升
- 1个查询略有下降
- 10个查询无明显变化
- 总体时间从1260.20ms降至1203.49ms
-
在SF=10(数据量较大)场景下:
- 4个查询有性能提升
- 2个查询略有下降
- 16个查询无明显变化
- 总体时间从13071.91ms降至13007.25ms
这些结果表明,在某些场景下优化重分区策略确实能带来性能提升,但影响程度与数据规模相关。
优化方向探讨
虽然当前设计有其合理性,但仍有优化空间:
- 合并操作:开发一个能同时完成并行度提升和哈希重分区的复合操作符
- 动态策略选择:根据数据量大小自动选择最优重分区策略
- 代价模型优化:更精确地评估重分区操作的开销和收益
结论
DataFusion中连续的RoundRobinBatch和Hash重分区看似冗余,实则是为了充分利用并行计算能力而设计的合理模式。虽然在某些场景下存在优化空间,但在当前架构下,这种设计能够有效平衡功能需求和性能表现。未来可以通过开发更智能的重分区策略来进一步提升查询性能。
对于开发者而言,理解这种设计背后的考量有助于更好地使用和优化DataFusion查询引擎,特别是在处理分布式查询时能够做出更合理的性能调优决策。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355