DataFusion中冗余重分区操作的分析与优化
2025-05-31 17:38:33作者:翟江哲Frasier
在Apache DataFusion查询引擎的物理计划生成过程中,我们发现了一个值得关注的重分区模式:当执行某些查询时,物理计划中会出现连续的RoundRobinBatch和Hash两种重分区操作。本文将深入分析这一现象的技术背景、产生原因以及可能的优化方向。
现象描述
在DataFusion生成的物理计划中,经常可以观察到以下执行模式:
- 首先使用
RoundRobinBatch策略对数据进行重分区 - 紧接着使用
Hash策略再次重分区
这种模式出现在多种查询场景中,特别是涉及表连接操作时。从表面上看,这种连续的重分区似乎存在冗余,因为Hash重分区本身也支持分区数量的增加。
技术背景
重分区操作的作用
在分布式查询处理中,重分区(Repartition)是关键的并行处理技术,主要实现两个目的:
- 改变数据分布方式,满足特定操作的需求(如Hash Join需要按连接键分布数据)
- 调整并行度,提高计算资源利用率
DataFusion的重分区实现
DataFusion提供了多种重分区策略:
RoundRobinBatch:简单轮询分配数据到各分区Hash:根据哈希值分配数据SinglePartition:合并到单个分区
冗余重分区的设计考量
虽然表面上看连续的重分区存在冗余,但实际上这种设计有合理的性能考量:
- 并行度提升:
RoundRobinBatch首先将数据均匀分布到多个工作线程 - 并行哈希计算:后续的
Hash重分区可以利用已有并行度,各工作线程可以并行计算哈希值
如果直接使用Hash重分区从单分区扩展到多分区,计算哈希值的阶段将无法并行化,成为性能瓶颈。
性能影响分析
通过TPC-H基准测试对比,我们观察到:
-
在SF=1(数据量较小)场景下:
- 11个查询有性能提升
- 1个查询略有下降
- 10个查询无明显变化
- 总体时间从1260.20ms降至1203.49ms
-
在SF=10(数据量较大)场景下:
- 4个查询有性能提升
- 2个查询略有下降
- 16个查询无明显变化
- 总体时间从13071.91ms降至13007.25ms
这些结果表明,在某些场景下优化重分区策略确实能带来性能提升,但影响程度与数据规模相关。
优化方向探讨
虽然当前设计有其合理性,但仍有优化空间:
- 合并操作:开发一个能同时完成并行度提升和哈希重分区的复合操作符
- 动态策略选择:根据数据量大小自动选择最优重分区策略
- 代价模型优化:更精确地评估重分区操作的开销和收益
结论
DataFusion中连续的RoundRobinBatch和Hash重分区看似冗余,实则是为了充分利用并行计算能力而设计的合理模式。虽然在某些场景下存在优化空间,但在当前架构下,这种设计能够有效平衡功能需求和性能表现。未来可以通过开发更智能的重分区策略来进一步提升查询性能。
对于开发者而言,理解这种设计背后的考量有助于更好地使用和优化DataFusion查询引擎,特别是在处理分布式查询时能够做出更合理的性能调优决策。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
148
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19