Arrow DataFusion 优化器默认连接分区策略改进分析
2025-06-14 20:16:08作者:郁楠烈Hubert
背景介绍
在大数据处理领域,查询优化器的性能直接影响着SQL查询的执行效率。Apache Arrow DataFusion作为一个高性能的查询引擎,其优化器设计对整体性能至关重要。近期社区针对DataFusion中连接操作的默认分区策略进行了重要改进,将默认策略从PartitionMode::Partitioned
调整为PartitionMode::Auto
,这一变化显著提升了查询优化器的智能化程度和执行效率。
连接分区策略概述
在分布式查询处理中,连接操作的分区策略选择是影响性能的关键因素。DataFusion提供了多种分区模式:
- Partitioned模式:强制对连接操作进行分区处理,适用于大数据集间的连接
- CollectLeft模式:当左表较小时,将其完整收集到单个节点再进行连接
- Auto模式:由优化器基于统计信息自动选择最优策略
原有实现的问题
在改进前,DataFusion默认采用PartitionMode::Partitioned
作为连接策略,这一设计存在明显局限性:
- 当左表数据量很小时(如经过LIMIT处理的结果),仍然强制分区处理,造成不必要的网络开销
- 无法利用文件或计划本身提供的统计信息(如已知的小表)进行优化
- 对于有明显优化空间的场景,无法自动选择更高效的
CollectLeft
策略
优化方案详解
社区决定将默认策略改为PartitionMode::Auto
,这一改进带来了多方面优势:
- 智能策略选择:优化器现在可以基于可用统计信息自动决策
- 充分利用统计信息:无论是文件元数据还是计划推导的统计信息(如LIMIT子句)都能被有效利用
- 减少不必要开销:对于小表连接场景,避免了冗余的分区操作
技术实现要点
在具体实现上,这一改进涉及以下关键技术点:
- 统计信息推断:即使没有显式收集统计信息,也能从计划结构中推导出有用信息
- 成本估算模型:基于数据量大小自动判断是否采用收集策略
- 执行计划生成:根据策略选择生成不同的物理执行计划
性能影响分析
这一默认策略的改变对典型查询场景产生了积极影响:
- 小表连接大表场景:性能提升显著,避免了不必要的数据重分布
- LIMIT查询后的连接:能够识别结果集大小并选择最优策略
- 统计信息可用场景:充分利用已有统计信息进行优化
实际应用示例
考虑以下典型查询场景:
-- 小表与大表连接
SELECT * FROM small_table JOIN large_table ON small_table.id = large_table.id;
-- 带LIMIT的查询后再连接
SELECT * FROM (SELECT * FROM table1 LIMIT 10) t1 JOIN table2 ON t1.id = table2.id;
在改进前,这些查询都会强制使用分区连接策略;改进后,优化器能够自动识别这些场景并选择更高效的CollectLeft
策略。
总结
DataFusion将默认连接分区策略改为PartitionMode::Auto
的改进,体现了查询优化器向更智能化方向发展的趋势。这一变化使得优化器能够基于实际数据特征选择最优执行策略,既提升了查询性能,又减少了用户手动调优的需求。对于DataFusion用户而言,这意味着开箱即用的更好性能体验,特别是在包含连接操作的各种查询场景中。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
45
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44