Arrow DataFusion 优化器默认连接分区策略改进分析
2025-06-14 00:22:23作者:郁楠烈Hubert
背景介绍
在大数据处理领域,查询优化器的性能直接影响着SQL查询的执行效率。Apache Arrow DataFusion作为一个高性能的查询引擎,其优化器设计对整体性能至关重要。近期社区针对DataFusion中连接操作的默认分区策略进行了重要改进,将默认策略从PartitionMode::Partitioned调整为PartitionMode::Auto,这一变化显著提升了查询优化器的智能化程度和执行效率。
连接分区策略概述
在分布式查询处理中,连接操作的分区策略选择是影响性能的关键因素。DataFusion提供了多种分区模式:
- Partitioned模式:强制对连接操作进行分区处理,适用于大数据集间的连接
- CollectLeft模式:当左表较小时,将其完整收集到单个节点再进行连接
- Auto模式:由优化器基于统计信息自动选择最优策略
原有实现的问题
在改进前,DataFusion默认采用PartitionMode::Partitioned作为连接策略,这一设计存在明显局限性:
- 当左表数据量很小时(如经过LIMIT处理的结果),仍然强制分区处理,造成不必要的网络开销
- 无法利用文件或计划本身提供的统计信息(如已知的小表)进行优化
- 对于有明显优化空间的场景,无法自动选择更高效的
CollectLeft策略
优化方案详解
社区决定将默认策略改为PartitionMode::Auto,这一改进带来了多方面优势:
- 智能策略选择:优化器现在可以基于可用统计信息自动决策
- 充分利用统计信息:无论是文件元数据还是计划推导的统计信息(如LIMIT子句)都能被有效利用
- 减少不必要开销:对于小表连接场景,避免了冗余的分区操作
技术实现要点
在具体实现上,这一改进涉及以下关键技术点:
- 统计信息推断:即使没有显式收集统计信息,也能从计划结构中推导出有用信息
- 成本估算模型:基于数据量大小自动判断是否采用收集策略
- 执行计划生成:根据策略选择生成不同的物理执行计划
性能影响分析
这一默认策略的改变对典型查询场景产生了积极影响:
- 小表连接大表场景:性能提升显著,避免了不必要的数据重分布
- LIMIT查询后的连接:能够识别结果集大小并选择最优策略
- 统计信息可用场景:充分利用已有统计信息进行优化
实际应用示例
考虑以下典型查询场景:
-- 小表与大表连接
SELECT * FROM small_table JOIN large_table ON small_table.id = large_table.id;
-- 带LIMIT的查询后再连接
SELECT * FROM (SELECT * FROM table1 LIMIT 10) t1 JOIN table2 ON t1.id = table2.id;
在改进前,这些查询都会强制使用分区连接策略;改进后,优化器能够自动识别这些场景并选择更高效的CollectLeft策略。
总结
DataFusion将默认连接分区策略改为PartitionMode::Auto的改进,体现了查询优化器向更智能化方向发展的趋势。这一变化使得优化器能够基于实际数据特征选择最优执行策略,既提升了查询性能,又减少了用户手动调优的需求。对于DataFusion用户而言,这意味着开箱即用的更好性能体验,特别是在包含连接操作的各种查询场景中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
275
暂无简介
Dart
696
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869