RESIDE 项目使用教程
2024-09-23 02:00:38作者:温艾琴Wonderful
1. 项目介绍
RESIDE 是一个用于改进远监督神经关系抽取(Distantly-Supervised Neural Relation Extraction)的开源项目。该项目通过使用侧信息(Side Information)来提升关系抽取的性能。RESIDE 在 EMNLP 2018 会议上被提出,并包含了对多种模型的实现,如 PCNN、PCNN+ATT、CNN、CNN+ATT 和 BGWA 模型。
2. 项目快速启动
2.1 环境准备
确保你的环境满足以下要求:
- TensorFlow 1.x
- Python 3.x
安装依赖:
pip install -r requirements.txt
2.2 下载数据集
下载 Riedel NYT 和 Google IISc Distant Supervision (GIDS) 数据集:
wget https://example.com/RiedelNYT.zip
wget https://example.com/GIDS.zip
2.3 预处理数据
运行预处理脚本:
sh preprocess.sh
2.4 训练模型
训练 RESIDE 模型:
python reside.py -data data/riedel_processed.pkl -name new_run
2.5 评估模型
评估预训练模型:
sh evaluate.sh
3. 应用案例和最佳实践
3.1 应用案例
RESIDE 可以应用于多种自然语言处理任务,如知识图谱构建、信息抽取等。例如,在构建知识图谱时,RESIDE 可以帮助自动识别和抽取实体之间的关系。
3.2 最佳实践
- 数据预处理:确保数据集的格式符合 RESIDE 的要求,特别是
voc2id
、type2id
和rel2id
等映射关系。 - 模型调优:使用 SGD 优化器进一步训练模型,以达到最佳性能。
- 侧信息利用:充分利用实体类型信息和关系别名信息,这些侧信息可以显著提升模型的性能。
4. 典型生态项目
- TensorFlow:RESIDE 基于 TensorFlow 1.x 开发,TensorFlow 提供了强大的深度学习框架支持。
- GloVe:RESIDE 使用 GloVe 嵌入来表示词汇,GloVe 是一种常用的词嵌入方法。
- Bi-GRU 和 Syntactic GCN:RESIDE 结合了双向 GRU 和句法 GCN 来编码句子,这些技术在自然语言处理中广泛应用。
通过以上步骤,你可以快速上手并应用 RESIDE 项目进行关系抽取任务。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
468

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
133
186

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
180
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4