TorchTitan项目中性能指标WPS与TPS的术语规范探讨
2025-06-20 20:38:33作者:范垣楠Rhoda
在深度学习模型训练过程中,准确衡量和报告性能指标对于模型优化和资源评估至关重要。近期TorchTitan项目社区针对训练日志中的性能指标术语展开了一次专业讨论,揭示了"Words per Second"(WPS)与"Tokens per Second"(TPS)这两个关键指标之间的区别与联系。
术语定义与技术背景 在自然语言处理领域,tokenization(分词)是将文本分解为模型可处理的最小单位的过程。一个token可能对应一个完整的单词,也可能是单词的一部分(如子词或字符)。相比之下,"word"是一个语言学概念,其定义会因语言和预处理方式而异。现代大型语言模型普遍采用基于token的处理方式,这使得TPS成为更精确的性能度量标准。
当前实现分析 TorchTitan代码中实际计算的是tokens处理速率:
wps = ntokens_since_last_log / (time_delta * parallel_dims.model_parallel_size)
但该指标被标记为WPS,这带来了两个潜在问题:
- 术语不准确:实际测量的是tokens而非words
- 数值偏差:由于平均而言约4个tokens对应3个words,使用WPS标签会导致约33%的速率虚高
性能评估的准确性 使用TPS作为标准指标具有显著优势:
- 跨模型一致性:不同模型采用相同tokenizer时比较更公平
- 跨语言可比性:不受特定语言词汇特性的影响
- 资源规划精确性:为计算资源配置提供更准确的基准
实现细节的透明度 讨论中还揭示了另一个重要细节:当前报告的WPS/TPS是单设备(local)的处理速率,而非全局(global)聚合值。这与batch size的日志方式形成对比,后者明确区分了local和global值。这种不一致性可能导致用户误解实际系统吞吐量。
行业最佳实践 主流深度学习框架和基准测试普遍采用TPS作为标准指标。保持术语一致性有助于:
- 研究成果的可比性
- 技术交流的清晰度
- 性能优化的针对性
结论与建议 技术指标的准确标注是工程严谨性的重要体现。对于TorchTitan项目,将WPS统一调整为TPS不仅能提高术语准确性,还能保持与行业标准的一致性。同时,明确区分local与global处理速率的报告方式,将进一步提升日志信息的实用性和透明度。这些改进虽然看似细微,但对于构建可靠的性能评估体系具有重要意义。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
287