TorchTitan项目中性能指标WPS与TPS的术语规范探讨
2025-06-20 00:47:59作者:范垣楠Rhoda
在深度学习模型训练过程中,准确衡量和报告性能指标对于模型优化和资源评估至关重要。近期TorchTitan项目社区针对训练日志中的性能指标术语展开了一次专业讨论,揭示了"Words per Second"(WPS)与"Tokens per Second"(TPS)这两个关键指标之间的区别与联系。
术语定义与技术背景 在自然语言处理领域,tokenization(分词)是将文本分解为模型可处理的最小单位的过程。一个token可能对应一个完整的单词,也可能是单词的一部分(如子词或字符)。相比之下,"word"是一个语言学概念,其定义会因语言和预处理方式而异。现代大型语言模型普遍采用基于token的处理方式,这使得TPS成为更精确的性能度量标准。
当前实现分析 TorchTitan代码中实际计算的是tokens处理速率:
wps = ntokens_since_last_log / (time_delta * parallel_dims.model_parallel_size)
但该指标被标记为WPS,这带来了两个潜在问题:
- 术语不准确:实际测量的是tokens而非words
- 数值偏差:由于平均而言约4个tokens对应3个words,使用WPS标签会导致约33%的速率虚高
性能评估的准确性 使用TPS作为标准指标具有显著优势:
- 跨模型一致性:不同模型采用相同tokenizer时比较更公平
- 跨语言可比性:不受特定语言词汇特性的影响
- 资源规划精确性:为计算资源配置提供更准确的基准
实现细节的透明度 讨论中还揭示了另一个重要细节:当前报告的WPS/TPS是单设备(local)的处理速率,而非全局(global)聚合值。这与batch size的日志方式形成对比,后者明确区分了local和global值。这种不一致性可能导致用户误解实际系统吞吐量。
行业最佳实践 主流深度学习框架和基准测试普遍采用TPS作为标准指标。保持术语一致性有助于:
- 研究成果的可比性
- 技术交流的清晰度
- 性能优化的针对性
结论与建议 技术指标的准确标注是工程严谨性的重要体现。对于TorchTitan项目,将WPS统一调整为TPS不仅能提高术语准确性,还能保持与行业标准的一致性。同时,明确区分local与global处理速率的报告方式,将进一步提升日志信息的实用性和透明度。这些改进虽然看似细微,但对于构建可靠的性能评估体系具有重要意义。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
667
153
Ascend Extension for PyTorch
Python
216
235
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
303
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
255
321
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
63
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
651
仓颉编程语言运行时与标准库。
Cangjie
141
876
仓颉编译器源码及 cjdb 调试工具。
C++
133
866