TorchTitan项目中性能指标WPS与TPS的术语规范探讨
2025-06-20 07:53:25作者:范垣楠Rhoda
在深度学习模型训练过程中,准确衡量和报告性能指标对于模型优化和资源评估至关重要。近期TorchTitan项目社区针对训练日志中的性能指标术语展开了一次专业讨论,揭示了"Words per Second"(WPS)与"Tokens per Second"(TPS)这两个关键指标之间的区别与联系。
术语定义与技术背景 在自然语言处理领域,tokenization(分词)是将文本分解为模型可处理的最小单位的过程。一个token可能对应一个完整的单词,也可能是单词的一部分(如子词或字符)。相比之下,"word"是一个语言学概念,其定义会因语言和预处理方式而异。现代大型语言模型普遍采用基于token的处理方式,这使得TPS成为更精确的性能度量标准。
当前实现分析 TorchTitan代码中实际计算的是tokens处理速率:
wps = ntokens_since_last_log / (time_delta * parallel_dims.model_parallel_size)
但该指标被标记为WPS,这带来了两个潜在问题:
- 术语不准确:实际测量的是tokens而非words
- 数值偏差:由于平均而言约4个tokens对应3个words,使用WPS标签会导致约33%的速率虚高
性能评估的准确性 使用TPS作为标准指标具有显著优势:
- 跨模型一致性:不同模型采用相同tokenizer时比较更公平
- 跨语言可比性:不受特定语言词汇特性的影响
- 资源规划精确性:为计算资源配置提供更准确的基准
实现细节的透明度 讨论中还揭示了另一个重要细节:当前报告的WPS/TPS是单设备(local)的处理速率,而非全局(global)聚合值。这与batch size的日志方式形成对比,后者明确区分了local和global值。这种不一致性可能导致用户误解实际系统吞吐量。
行业最佳实践 主流深度学习框架和基准测试普遍采用TPS作为标准指标。保持术语一致性有助于:
- 研究成果的可比性
- 技术交流的清晰度
- 性能优化的针对性
结论与建议 技术指标的准确标注是工程严谨性的重要体现。对于TorchTitan项目,将WPS统一调整为TPS不仅能提高术语准确性,还能保持与行业标准的一致性。同时,明确区分local与global处理速率的报告方式,将进一步提升日志信息的实用性和透明度。这些改进虽然看似细微,但对于构建可靠的性能评估体系具有重要意义。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
311
2.72 K
deepin linux kernel
C
24
7
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
638
242
仓颉编译器源码及 cjdb 调试工具。
C++
124
851
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
469
Ascend Extension for PyTorch
Python
148
175
暂无简介
Dart
604
135
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
226
81
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
363
2.99 K
React Native鸿蒙化仓库
JavaScript
236
310